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ABSTRACT

We discuss an autocatalytic reaction system: the 

cyclic competition model A1+A2 → 2A2, A2+A3 

→ 2A3, A3+A4 → 2A4, A4+A1 → 2A1, as well as 

its neutral counterpart. Migrations are introduced 

into the model. When stochastic phenomena are 

taken into account, a phase transition between a 

“fixation” and a “neutral” regime is observed. In 

the “fixation” regime, species A1 and A3 form an 

alliance against species A2 and A4, and the final 

state is one in which one of the symbiotic pairs 

has won. The odd-even “coarse-grained” system 

is mapped onto the two-species neutral (Kimura) 

model. In the “neutral” regime, all four species 

survive for long (evolutionary) times. The analyti-

cal results are checked against computer simula-

tions of the model. The model is generalized for 

n species.

Keywords: cyclic competition, autocatalytic 

system, nonequilibrium phase transition, system 

size dependence

PËRMBLEDHJE

Sistemi në shqyrtim është një reaksion 

vetëkatalizues: modeli i konkurrencës ciklike 

A1+A2 → 2A2, A2+A3 → 2A3, A3+A4 → 2A4, 
A4+A1 → 2A1, si edhe analogu i tij neutral. Në 

model lejohen migracione të pjesëzave. Kur mer-

ren parasysh dukuritë stokastike, vërehet një ka-

lim fazor ndërmjet një regjimi të “fiksimit” dhe 

atij “neutral”. Në regjimin e “fiksimit”, speciet 

A1 dhe A3 formojnë një aleancë kundër specieve 

A2 and A4, dhe në gjendjen përfundimtare fiton 

njëri nga çiftet simbiotike. Sistemi “i bluar trashë” 

i specieve tek e çift është ekuivalent me modelin 

neutral të Kimurës. Në regjimin “neutral’’ të katër 

speciet mbijetojnë për një kohë shumë të gjatë. 

Rezultatet analitike verifikohen me simulime 

kompjuterike të modelit. Modeli përgjithësohet 

për n specie.

INTRODUCTION

There is a class of processes in which the com-

petition plays a very important role. Examples are 

ecological, political, epidemiological, economic, 

chemical, reaction-diffusion, biological systems. 

An important sub-class of those is the cyclic com-

petition systems. In ecology, cases when variants 

of a species compete with one-another in a cyclic 

fashion have been observed [13, 7, 15]. Another 

system of interest are cyclic food webs. In politics, 

different political parties compete and replace 

one-another in the helm of power. In the epidemi-

ological context, examples are diseases which do 
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not leave permanent immunity, known otherwise 

as SIRS (Susceptible-Immune-Recovered-Sus-

ceptible) models [1, 4]. Goodwin [3] introduced a 

system of interacting biochemical metabolic oscil-

lators, which has an autocatalytic feedback mech-

anism. Biochemical reactions in a cell support its 

activities, hence assuring its very existence. Auto-

catalytic reactions are an important class of reac-

tions within a cell. They are reputed to have made 

possible the birth and existence of life itself.

The simplest example of an autocatalytic reac-

tion is the loop of the type Ai+Ai+1 → 2Ai+1, where 

i = 1, …, k; Ak+1 = A1. The molecules are in a well-

stirred container (the cell), which is in contact with 

a reservoir (the outside environment). They can mi-

grate into and out of the container, to and from the 

reservoir, according to the following rules: a mol-

ecule (individual) of species i leaves the container 

at a rate D· ai, and enters it at a rate D· si, where ai 

and si are its concentrations in the cell and the res-

ervoir, respectively. In another (ecological) context, 

the {Ai}’s are versions of a biological species, and 

in the epidemiological one, states of an individual 

(e.g. susceptible, infected, etc.)

In ecological systems it makes sense to also 

study the neutral version of this model, in which  

Ai+Ai+1 → 2Ai+1, or 2Ai with equal probability, 

corresponding to the Kimura model of neutral 

genetic drift [8, 9, 10]. The behaviour of the two 

allele almost neutral drift model with mutations 

is well studied [11, 2]. For small mutation prob-

abilities, smaller than 1/N, there is extinction of 

one species and fixation. Otherwise, both species 

coexist forever in the high mutation (“neutral”) 

regime. The transition is second-order, and criti-

cal behaviour is observed.

In two previous studies [5, 6] we have consid-

ered an ABC model with cyclic competition/neu-

tral drift and mutations (migrations) at a constant 

probability. The system exhibits a critical transi-

tion from a “fixation” regime to a “neutral” one. 

The survival probability decays exponentially 

below the transition point, but the exponent de-

creases as the mutation (migration) probability 

per particle increases, until it becomes zero at the 

critical point. The critical mutation (migration) 

probability depends on system size as 1/N, and 

the models have the same power-law exponent: 

-1. There is no qualitative difference between the 

system with mutations and that with migrations.

In the present paper we study the system with 

four species, and show that the above-described 

picture still holds. Next we generalize for the n-

species system.

2. SYSTEM-SIZE EXPANSION 
OF THE MASTER EQUATION

The rate equations of our model read:

)(=
11 iiiiii

i asDaaaa
dt

da
−+− +−            (1)

In the rate equations approximation, the sys-

tem size is conserved. The rate equations (1) have 

a fixed point, and it is a stable solution. Hence 

in this approximation, the system will approach 

the centre (all ai’s are equal), and remain there. 

However, the rate equations only describe the 

behaviour of the average values of the individ-

ual populations. In the real world, the system is 

subject to stochastic noise due to birth and death 

processes (intrinsic noise), which we take to be 

Poisson-distributed. The random nature of these 

processes need be taken into consideration, if we 

want to obtain the correct and complete behav-

iour of the system. For that we ought to write the 

master equation, and then solve it. Unfortunately, 

very few master equations are simple enough to 

accept analytical solutions. We deal with this situ-

ation by expanding them into a Fokker-Planck 

equation, which then helps us draw the necessary 

information about the behaviour of the system.

We use the “shift” operators notation:

εif(A1, A2, A3, A4) = f(A1 + 1, A2, A3, A4)   (2)

εi
-1f(A1, A2, A3, A4) = f(A1 + 1, A2, A3, A4)

and similarly for the other concentrations.

Using the “shift’’ operators notation (2), the 

master equation for the cyclic competition system 

with migrations reads:
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For systems like the one above, whose rate 

equations have a stable solution, the Ω-expansion 

of van Kampen [17] works exceptionally well. Its 

idea is to split the variables of the problem into 

a non-fluctuating part, and a fluctuating one, i.e. 

deal separately with the mean-field solutions and 

the fluctuations (which are taken to be of the or-

der √N̄  ). In this approach, the numbers of the indi-

vidual populations are written:

Ai = Nφi + √N̄  xi                 (4)

Here the φi are the steady-state (non-fluctuat-

ing) concentrations of the i-th species respectively 

(which only depend on time), and the xi are the 

fluctuations. Then the probability distribution 

P(Ai, t) is transformed into P({xi}, t) and:
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Next we substitute everything into the master 

equation, leave only the term ∂Π/∂t on the left 

hand side, and group the right hand side terms 

according to powers of √N̄  . The first term is of 

order N1/2
, and it must be equal to zero, for an ex-

pansion in terms of N1/2
 to make sense. That term 

reproduces the rate equations in terms of the con-

centrations φi, with steady state solution φi = 1/4.

The terms of order N0 give a linear Fokker-

Planck equation of the form:
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where the A-matrix for the cyclic system is:

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−−−

−−−−

−−−

−−−

D

D

D

D

1344

3423

2312

1124

0

0

0

0

φφφφ

φφφφ

φφφφ

φφφφ

 
The B-matrix is has diagonal elements of the form 

Bii = D(si + φi) + φi (φi-1 + φi+1), and off-diagonal 

ones: Bij = -φiφj. The Fokker-Planck equation ob-

tained this way is linear. We are interested in fluc-

tuations around the steady state, otherwise known 

as “linear noise approximation’’. The solution is 

known to be a Gaussian; the problem represents 

itself as an Ornstein-Uhlenbeck process. For our 

purposes, it suffices to determine the first and sec-

ond moments of the fluctuations. Following van 

Kampen [17], we can multiply the Fokker-Planck 

equation by  xi and integrate by parts to get:

〉〈
〉〈
∑ jij

j

i xA
dt

xd
=                (7)

For simplicity we can assume that all the con-

centrations in the reservoir are equal: si = s = 1/4. 

The eigenvalues of the A matrix are -D (doubly-

degenerate), and -D ± iφ√2̄  where φ is the steady 

state value of the concentrations. The negativity 

of the eigenvalues guarantees the stability of the 

zero solutions to the first moments equations. 

Hence, the average of the fluctuations decays to 

zero and remains zero.

The equations for the second moments can be 

obtained similarly:
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By symmetry, all the diagonal terms 〈xi
2〉 are 

equal, as well as off-diagonal terms (correlations) 

〈xixj〉. They depend on the migration probability 

D alone. The steady state solutions for the diag-

onal terms (and also for the variances, since the 

mean values are zero), are as follows:
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where s is the concentration of any of the species 

in the reservoir. The number of individual species 

will fluctuate around N · φs where φs is the steady-

state concentration. All the species survive forev-

er. This way, (sufficient) migrations into and out 

of the container maintain diversity in the system.

t is worth noting that the only difference be-

tween the three [5, 6] and four species systems 

expansion is the appearance of an “off-diagonal” 

of zeroes, in positions (i, j) for which the species 

Ai and Aj do not react. This means that the above 

algebra will remain exactly valid when there are 

more than four species in the system. Hence, our 

results will hold for any number of species, and 

any reasonable system size.

If there is only migrations into and out of the 

container (i.e. no cyclic reactions), the system re-

mains near the centre point, and the product of the 
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concentrations remains considerably above zero; 

in other words, all species are present in the system 

at (almost) all times. When both the cyclic/neutral 

mechanism and migrations are present, one can oc-

casionally observe temporary extinctions. Since the 

boundary is not absorbing, occasional migrations 

will return the system to the state with maximal 

symmetry (diversity) where all species coexist. The 

migrations then manage to keep the system maxi-

mally disordered, since they are stronger than the 

fluctuations (which try to drive the system toward 

the boundary, i.e. fixation, and keep it there). The 

migration rate acts then as some sort of “tempera-

ture’’, and decreasing the migration rate would be 

analogous to annealing the system.

However, by looking at the expression for the 

variance of the fluctuations above (9), one can ob-

serve that when the migration probabilities per 

particle (migration rate) approach zero, the vari-

ance of the concentrations of individual popula-

tions is of the order, and

D

sD

2

))((2
2 ++ φφ

it becomes of order 1 (i.e. the order of macroscopic 

concentrations,) when D ∝ 1/N. This gives us the 

critical value for the migration probability.

Our analytical results agree very well with 

those of Togashi and Kaneko [16], who simulated 

the four-species autocatalytic system with a very 

small number of molecules. They keep the diffu-

sion rate D constant, and vary the system size. As 

the system size decreases and goes through a cer-

tain value (which coincides with 1/D, the inverse of 

migration rate), they observe the above-described 

transition into the broken-symmetry state.

As a final remark regarding the even-number 

cyclic system, it is useful to try and “coarse-grain” 

its dynamics into two species: odd- and even-

numbered. For simplicity, let us consider the four-

species system. In this case:

Aodd = A1 + A3       Aeven = A2 + A4                    (10)

and the master equation will transform as follows:
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This is exactly the master equation for Kimura’s 

two-species neutral drift system [8, 9, 10], if we 

recall that the odd-even system size is N’ = N/2. 

Duty [2] has shown that this system is equiva-

lent to a branching process [14] with selection 

coefficient s = 0. It is critical, and the probability 

of survival decays with time as t-1, as verified 

from simulations (Figure 1).

It is easy to see that for systems with more 

species (but always an even number of them) 

we will obtain the same “coarse-grained” master 

equation.

CONCLUSIONS

The transition observed by Togashi and Kaneko 

[16] in the four-species autocatalytic loops is the 

same critical transition we have previously [6] ob-

served for three-species systems. It corresponds 

to a crossover from a fully symmetric state in the 

high-migration regime, to a “fixation” state for 

low-migration rates, in which the symmetry is 

broken in favour of one or more species. The “fixa-

tion” regime in the four-species system consists in 

species A1 and A3 joining their efforts against spe-

cies A2 and A4, and the final state of the system is 

one in which one of the pairs has completely “eat-

en up” the other. This situation is reminiscent of 

symbiosis, being yet another example of a system 

in which competition leads to cooperation.

Figure 1. Number of survivors vs. time in log-log 
axes, for the “coarse-grained’’ odd-even species, 

system sizes N=4000 and N=20.000 (they can not 

be distinguished). The slope of the line is -1.03±005 
for N=4000, and -1.006±0.009 for N=20.000 

(a line of slope -1 is shown for comparison)
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Since the system size is always finite (no matter 

how large), there is a value of the migration prob-

ability per particle, for which the fluctuations of 

the concentrations become of order one, and the 

system undergoes a critical transition. The critical 

diffusion rate varies with system size as 1/N, and 

the product DN ∝ 1, i.e. the number of migrants 

per unit time, necessary for the symmetry to be 

preserved in the system (all species to survive) 

is of order 1. This result is a bit counterintuitive, 

since it does not depend on system size. But let 

us recall that it takes only one bad apple… This 

manifests itself in epidemics situations, when it 

poses serious problems.

The analytical calculations are in excellent 

agreement with the simulation results, obtained 

for three- and four-species systems [6, 16]. The 

form of the equations for the moments of the fluc-

tuations suggests that systems with n species will 

exhibit a similar transition. This situation, known 

as diffusion-limited reaction, has been observed 

in physical systems in low dimensions, when dif-

fusion is not efficient in mixing the reactants, such 

as the Ovchinnikov-Zeldovich segregation phe-

nomenon [12].
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