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ABSTRACT 
Numerical solution is developed for a wave equation with boundary damping arising in the study of the 
physical phenomena of the oscillations that occur in overhead power transmission lines and other flexible 
structures. The physical model is that of a string which is fixed at one end and the other end is attached to 
a dashpot system, where the damping generated by the dashpot is small. The mathematical model is an 
initial-boundary value problem for a weekly nonlinear hyperbolic differential equation with non-classical 
boundary conditions.   
The numerical method proposed is of the type of characteristics. It takes advantage of the special mesh 
generated by the characteristic curves of the equations to be solved and the specialty of the initial-
boundary conditions involved. The method seems also to minimize the difficulties of complicated 
algebraic procedures and the word-length problems introduced by the classical method of characteristics.    
 
PËRMBLEDHJE 
Në këtë punim zgjidhet numerikisht një problem diferencial valor me shuarje kufitare, që ndeshet në 
studimin e fenomenit fizik të lëkundjeve në linjat e tensionit të lartë dhe në struktura të tjera fleksible. 
Modeli fizik është ai i një korde njëri skaj i së cilës qëndron i fiksuar, kurse skai tjetër lidhet me një sistem 
që gjeneron lëkundje, me koeficient shuarje të vogël. Modeli matematik është një problem i vlerës 
fillestare-kufitare për një ekuacion diferencial jolinear të dobët me kushte kufitare jo klasike. 
Metoda numerike e propozuar është e tipit të karakteristikave. Ajo shfrytëzon rrjetin specific të nyjeve që 
gjenerojnë kurbat karakteristike të ekuacionit si dhe vecoritë e kushteve fillestare-kufitare të problemit. 
Duket gjithashtu se metoda e propozuar minimizon vështirësitë e procedimit algjebrik të metodës klasike 
të karakteristikave si dhe kompleksitetin shtjellues të saj.    
 
INTRODUCTION 
Overhead transmission lines, suspension bridges and many other objects known as flexibles structures can 
be subject of oscillations due to different causes. The mathematical models that describes these oscillations 
can be expressed in initial-boundary value problems for wave equations like in [3, 5, 6] or for string 
equations like in [1, 2]. The corresponding partial differential equations can be linear or nonlinear of 
second or fourth order with classical or non-classical boundary conditions.    
The following model is derived and analyzed in [4] for the vibrations of a string which is fixed at x = 0 and 
is attached to a dashpot system at x = !:   
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Find the function u(x, t) which satisfies the equation  

,                                      (1) 
Subject to boundary conditions 

  (2) 

                                    (3) 
and initial conditions 

                                                (4) 

                                              (5) 

 The above functions  are the initial displacement and the initial velocity of the string, 

the damping parameter  is a positive constant, and  is a small dimensionless parameter 

( ).   
Thus, in (1-5) we have an initial-boundary value problem for a weakly nonlinear partial differential 
equation with a non-classical right boundary condition. It can be considered as a model describing the 
galloping oscillations of the overhead transmission lines in a wind field. In this case one of the aims of the 

study is to find the values of the damping parameter  for which the solution  tends to zero or 
tends to a certain bounded function. 
As it is shown in [4] that the problem (1-5) is well-posed. The Laplace transform method is initially used to 

construct analytical approximation of the solution for the linear variant of equation (1), which is 

obtained after neglecting the nonlinear term . A two-timescales perturbation method is used only for 
the nonlinear case of simple initial conditions, referred as the monochromatic conditions of the form 

    and     
Analytical solutions to these differential equations pose several practical difficulties: 1) analytical solution 
may be possible for restricted cases 2) analytical solution methods in most cases are very complicated 3) 
analytical solution found may be rather inconvenient for practical use 4) in most cases the problem must 
reinvestigated and resolved for any nonessential changing in its initial-boundary conditions.  
An indirect numerical method for the solution of the problem (1-5) by transforming the second order PDE 
(1) to a system of two first order PDEs is presented in [4]. A difference scheme of the first order, which is 
supposed to have minimum accuracy, is then applied for the PDEs system.   
The numerical method proposed in this paper for the solution of the problem (1-5) is based on the method 
of characteristics which is applicable for the weakly nonlinear hyperbolic problem of the general form:   

,   

g

,                  (6) 

where  denotes a function in the variables   and   for i = 1, 2, 3, 4. 
The initial and boundary conditions are given as 

 

g

                  (7)-(8) 

                                                          (9) 

                                                       (10) 
It can be seen that differential equation (1) is a special case of the equation (6), but the initial-boundary 
conditions (2-5) seem to be considerably different from the analogous conditions (7-10).   
 

NUMERICAL SOLUTION FOR THE WAVE PROBLEM (1-4) 

Let denote P(x1, t1) and Q(x2, t2) with t1=t2=0, as two points along x-axis so that . One 

can easily verify that the straight lines  and 
 

 are the 4 

characteristic curves of the equation (1) in points P and Q respectively. Let  be the intersection of 

the proper lines  and . The standard procedure of the method of 

characteristics for the determination of the point  and finding the approximations for 

 at this point (hereafter known as (P,Q,R) process), is very simplified for 

the case of equation (1). Since  are known at points P and Q, the 

conditions under which can be uniquely found, after some algebraic operations, 
are obtained by the equations: 
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                       (11) 

       (12) 

with   
It can be seen that the first equation of the simultaneous system (11) – (12) is an explicit one, while the 

second equation is implicit because of the term 

y

 involved in it. This fact 
will be used latter.  

In the same way the approximation to ( )u R  results as,  

        (13) 

It can be seen that (11) – (12) for finding the approximations to  is independent 

and autonomous from the process (13) for finding the approximation to , because the function 

 is not involved explicitely in equations (11) – (12). This fact will also be used latter.  
A mesh G is obtained by discretizing the interval 0 ! x ! ! into m subintervals each of width h = !/m. It is 

assumed that  exists so that whenever 0<x<!. Consequently,  

and  will be known functions whenever 0 < x < ! and t = 0. Meanwhile, following the conditions 
(2 – 5), one can easily obtain: 

                                              (14) 

                                             (15) 

Considering the conditions (14) and (15) it is obvious that there are only three – out of the six necessary 

definitions of 

( ) ( )

 at points x = 0 and x=! , there are only three of them. Thus, 

the method of characteristics can not be “initialized”.  
This difficulty can be overcome by the proposed method as it follows:  
The notation G0 will be used hereafter to denote the points of G. The process (P,Q,R) is applied first for (m-

1) interior points of G0 and so (m-2) points are obtained where the function  and its partial derivatives 
are approximated. The process (P,Q,R) is repeated for the last (m-2) points and so (m-3) other new points 

are obtained.  It will be shown now how the values of  will be 
approximated at points A, D, F and S, T, V (see the figure 1). Let suppose that the values of u and its 

partial derivatives, , are known at point S. If the processes (P,Q,R) (Q,S,T) and 

(R,T,V) would be applied, then the approximations to  at point V would 

be obtained. The notations  will be used to denote these 
approximations, to express the fact that the step h is used. Other approximations for 

 at point V would be obtained if the process (P,S,V) would be applied. The 

notations  will be used to denote these last approximations, just to 
express the fact that the step 2h is used here. The two kinds of the approximations above would be 
obtained by two different ways, so that three equations can be written by equaling them value-to-value. 

The two equations corresponding to  are dependent, since the approximations (11) 

and (12) were obtained simultaneously, and, only the equation based on  would be maintained 
(which is preferred due to its explicit form). Assembling the two independent remained equations with 
equation (15) provides a system of three equations for the determination of the approximations to 

.  
The algebra would be rather complicated to write this procedure analytically, but it can be easily 
implemented numerically considering the above facts. The following algorithm details the procedure for 

the determination of  

y g

 at points S, V, A and F. 

Step 1 guess the value p for  and compute the approximation to by (15) 
Step 2 write equations (11) and (12) for points Q, S, T and compute the approximations to 

. Denote these approximations as  to express the fact that 
they depend on p. 
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Step 3 write only the explicit equation (11) for points R, T, V and compute the approximation to  

Denote this approximation as    

Step 4 write only the explicit equation (11) for points P, S, V and compute the approximation to . 

Denote this approximation as . 

Step 5 solve iteratively the equation   and find its root . Set 

 and from (15) compute . 

Step 6 As soon as  are determined, guess the value  and similarly to steps 

1-5 find the value of  as the root of the equation At the end of 

this step the approximations to  at points S and V are found.  

Step 7 Find the approximation to  at points A and F by a similar but simpler process as above.    
As it can be seen from the steps 1 to 5 only one implicit equation (12) must be solved per each iteration 
step 5.  
Let us denote by G1 the mesh of (m+1) points formed by points A1, F, V and S1 as in figure 1, and by (m-3) 
points obtained by the repeated (P,Q,R) process for interior points of G0. It can be seen that based on the 
mesh G1, a mesh G2 may be constructed in the same way, and then a mesh G3 and so on, in order to move 

farther up the time axis. So a uniform and square mesh of points is obtained where the function  
and its partial derivatives are approximated. The full detailed algorithm of the proposed method, its 
implementation in MATLAB, and the comparison of numerical results with those appearing in literature 
will be presented in another publication.  
 

CONCLUSIONS 

 Numerical solution has been developed in this paper for a wave equation with boundary damping. This 
problem can be regarded as a simple model describing oscillations of flexible structures such as overhead 
transmission lines in a wind field.  
A numerical method of the type of characteristics was found and applied. It has been taken advantage of 
the particularities of the problems to be solved, namely the special configuration of the mesh of points 
generated by characteristics curves of the equation   and the specialty of the initial-boundary conditions 
involved. As the original initial conditions of the problem did not provide sufficient data for the unknown 
function and its derivatives at the two endpoints, the classic method of characteristics could not be 
initialized. So this method was applied only for the interior points of a uniform mesh, but in a repeated 
way. An iterative technique was used then to compute the lacking data at the two endpoints, applying the 
method of characteristics for the 6 endpoints in two ways: as a double process with step h and then as a 
single process with double step 2h. The numerical method proposed here is easier in stating and coding 
compared to the complicated algebraic procedures introduced by the classic method of characteristics. 

 

Figure 1: The characteristic curves of the equation (1) and the meshes G0 and G1 
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