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SUMMARY

In this paper, we give some fixed point theorems for two, three and generally, for m mappings in m fuzzy metric
spaces, m—2 of mappings must be continuous. These results extend, generalize, unify and fuzzyfy some of well -
known fixed point theorems for contractive-type mappings in metricspaces forexample the theorem of Nung, Jain
et al.,, Popa, Teld and the theorem of Fisher. The extending and generalization of these known results for an

arbitrary number m of fuzzy metricspaces is obtained using implidit relations introduced as follows: let @, be the
setof continuous functions with m variables:

O: [O,l]m - [0,1], meN with the following properties:

1. @ is nodecreasingon tq,t;,...t, varablesand 2. @(t,t,...t) >t for Vte[O,l].

After that, we prove our theorem from which a seweral corollaries follow according as the forms of implidt

function @ . A counterexample proves that the continuityof m—2 between m mappings is necessary.

Key words: Cauchysequence, fixed point, fuzzy metricspace, implicitrelation.

1. INTRODUCTION AND PRELIMINARIES

Fisher [5] and Popa [12] proved some fixed point
theorems on two metric spaces. Nung [12] and
Jain et al. [8] proved similar results for three
metric spaces. Later, using the implicit relation,
other authors unified and generalized some of
the well-known theorems. So Telci [16] and later
Aliouche and Fisher [1] realized the
generalization for two mappings on two metric
spaces. In this paper, a several known results for
two and three metric spaces are generalized and
extended in two, three and in general in m fuzzy
metric spaces.

The concept of fuzzy sets was introduced initially
by Zadeh [17]. George and Veeramani [6]
modified the concept of fuzzy metric space which
was introduced by Kramosil and Michalek [10]

and defined a Hausdorff topology in this space.
Grabiec [7] extended the well known fixed point
theorems of Banach [2] and Edelstein [4] in fuzzy
metric spaces. In this paper, using a new class of
implicit relations, we prove a theorem as a
corollary of which are taken the fuzzyfication of
theorems: Nung [12], Jain et al [8], Popa [13],
Telci [16], the theorem of Fisher [2] etc.

Firstly, we will give some known definitions and
lemmas.

Definition 2.1. [17] Afuzzy set A in Xis a function
with domain X and values in [0,1].

Definition2.2.[15] A binary operation
%:[0,1]%[0,1] —[0,1] is called a continuous t-
norm ,if ([0,1],%) is anabelian topological monoid
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with the unit 1 such that a*b<c*d whenever
a<c and b<d forall a,b,c,d €[0,1].

Two typical examples of continuous t-norm are
a*b=ab and a*b=min(a,b).

Definition 2.3.[6] The 3-tuple (X,M,*) is called a
fuzzy metric space if X is an arbitrary (non-
empty) set, * is a continuous t-norm and Mis a
fuzzy set on X2 x (0,00) satisfying the following
conditions:

Forall x,y,zeX and t,s>0,

(FM-1) M(x,y,t)>0,

(FM-2) M(x,y,t)=1 ifand only if x=vy,

(FM-3) Mx,y,t)=Ml(y,x,t),

(FM-4) M(x,y,t)*M(y,z,s) <M(x,z,t+s)

(FM-5) M(x,y,): (0,00) = [0,1] is continuous.
Example 2.4.[6] Let (X,d) be a metric space.
Define a*b=ab and

kt"
kt" +md(x,y)
Then (X,M,*)is a fuzzy metric space.
In the above example by taking k=m=n=1 we

M(x,y,t) = ,k,m,neR".

et M(x,y,t)=——.
Bt MY = dey)

We call this fuzzy metricinduced by a metric d
the standard fuzzy metric.

Definition2.5[7] Let (X,M,*) be a fuzzy metric
space. Then:

(1) A sequence {xp}tin X is said to be

convergent to a point xeX (denoted by

lim x,=x) if lim M(x,,x,t)=1 for all
n—o0 n—0

t>0.
(2) A sequence {x,} in X is called a Cauchy

sequence if lim M(xn+p Xn,t)=1forall t>0
n—o0

and p>0.
(3) A fuzzy metric space in which every Cauchy
sequence is convergentis called complete.
Lemma 2.6.[7] For all x,yeX,M(x,y,) is no
decreasing.

Remark 2.7. Throughout this paper, (X,M,*) will

denote the fuzzy metric space in the sense of

Definition 2.3 with the following condition:
(FM-6)  lim M(x,y,t)=1for all x,yeXand

t—0
t>0.
Lemma 2.8.[14] Let (X,M,*) be a fuzzy metric
space. Then Mis a continuous function on
x2 x(0,0) .
Lemma 2.9.([16],[17]) Let {y,} be a sequencein
a fuzzy metric space (X,M,*) .If there exista
number k €(0,1) such that
M(Yni2,Yne1 KD =M(Ypi1,Yn,t) forall t>0 and
n=1,2,...then {y,} is a Cauchysequencein X.
Lemma 2.10.[17] If for all x,yeX, t>0 andfora
number ke(0,1), M(x,y,kt)>M(x,y,t), then
X=Y.

3. IMPLICIT RELATIONS
Let d,, bethesetof continuous functions

with mvariables:
¢:[01]" >[0,1],meN
with the following properties:
3.a. ¢ is nodecreasingon tq,t,,...t,, variables

and
3.b. g(t,t,...1) >t for Vte[0,1].

We denotel, ={1,2,...m}. The following

functions satisfy the above properties:
Example 3.1. ¢(tq,t5,...t,) =min{t{,t,,...t 1.
Example 3.2.

1

Example

b
3.3.¢(ty,ty,...ty) =[min{t} ,t5,... th }/P .
Example 3.4. ¢(t{,t,,...ty) =11 ¥ty =0kt
where * isa t-normsuch that t*t>t asitis the
case a*b=min{a,b}.

For m=5 we can give these examples:

Example 3.5. ¢(t{,t,,t3,t4,t5)=t;, i€ls.
Example 3.6. (p(tl,tz,t3,t4,t5)=min{ti,tj},

i,j€|5.
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Example 3.7. @(tq,t;,t3,t4,t5) =min{t;, t;, t; }, T:X—>Y,S:Y—>X two maps whichsatisfy the
conditions:

Ml (SV; STXI kt) 2 (P1 (MZ (yl TXI t)lMl (Xlsyi t)er (XI STXI t))

My (Tx, TSy, kt) > @, (My (x, Sy, t), My (y, Tx, 1), My (y, TSy, 1)) for

i,jkels.

4. MAIN RESULTS

Firstly, we give the main theorem for m=2 all xeX,yeY,t>0 where ke(0,1) and
and m=3 and then we give the theorem for m ¢1,9, € D3 .Then ST has a unique fixed point
fuzzy metric spaces. a.eXand TS has a unique fixed point

B eY .Moreover, Taa=f3 and SB=a. .
Theorem 4.1 Let (X,Mj *;) and (Y,M,,*,) be

two complete fuzzy metric spaces and

Theorem 4.2 Let (X,My,*1), (Y,M,,*;),(Z,M3,*3) be three complete fuzzy metric

spaces, T:X—Y,S:Y—>Zand R:Z—X three maps satisfying
My (RSy,RSTx,kt) > @4 (M, (y, Tx, t), M3 (Sy,STx, t), M, (x,RSy, t), M, (x,RSTx,t)) (1)
M, (TRz, TRSy,kt) > @, (M5(z,Sy, t),M; (Rz,RSy, t), M, (y, TRz, t),M, (y, TRSy, 1)) (2)
M3 (STx,STRz,kt) > @3(My (x,Rz,t),M, (Tx, TRz, t),M3(z,5Tx, t),M3(z,STRz,t)) (3)

forall xeX,yeY,zeZ,t>0 where ke(0,1) and ¢q,0,,¢3 €D, . If one of the maps T,S,R is
continuous, then RST has a unique fixed pointa € X, TRS has a unique fixed point B €Y and STR has a
unique fixed point yeZ .Moreover, Ta=,Sp=y and Ry=a.

Proof. Let xy bea arbitrary pointin X .Construct the sequences {x,},{y,},{z,} in X, Y and Z,
respectively, as follows:

X, =(RST)"Xg , Yn=TXn_1 , Z,=SY,, NeN.
We will show that, {x,}, {y,}and {z,} are Cauchy sequences.

Denote:
dn (t)= Ml(xn 'xn+1't)

Pn(t) =My (yn,Yni1,t)
on(t) =Mz(zn,2n41,1)
Apply (2) with z=z,_; and y=vy,,.
Pnkt) =My (Y, Yne1,kt) =My (TRz,_1, TRSY,,  kt)
Then: 2 @Mz (21,25, 8),M1 (X1, X0, 1) M2 (Y, Vi, 1) M2 (Y, Vg 1) (4)
=92(0n-1(t),dn 1 (t),1,p4 (1)

We prove, first, that p,(t) > min{c,_; (t),d,_1 ()}, VneN.
Suppose that p,(t) <min{c,_4(t),d,_1(t)} for some neN.Using properties 3.a and 3.b of ¢, , we have
Pn (kt) = P2 (pn (t)' Pn (t)rpn (t):pn (t)) = Pn (t)
or
MZ (yn lyn+1'kt) 2 MZ (ynlyn+llt)
Now, from Lemma 2.10 it follows that y, =y,.1 and p,(t)=My(y,,Yne1,t)=1. S0, we get
1=p,(t) <min{c,_1(t),d,_1(t)} . Acontradiction! Remember that c,_4(t),d,_1(t) € [0,1] . Hence,
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Pn(t)2min{c,_1(t),d,_1(t)}, VneN (5)
Next, from (4) , after the application of 3.a and 3.b,we find

pn(kt) =min{o,_4(t),d, ()}, VneN (6)

In a similar way, using (3) and (5), we have
o (W) = Maizy, Ty 1, B = 8o (3Tx 1, BTERz , k)

2 :F'3':~II"I11':xn—1? Lne tj? ME ':Yn’ ¥n4- t:]? ME[:zn’ Zys t:" M3Ezn’ Zrelr t:]:]
= @3ty (8, Py (B 0y (E0) £ min{ oy (8D, oy (B}

Thus,
opkt)=min{c,_1 (t),d,_1 ()}, ¥YneN (7)

Analogously, applying (1), we find
dy (t) = M (s g, bb) = MRSy, BSTo KD
2 CPIEMEEYmYnH’ t:]’MIEZnF zn+1’t:]?M1':xn’xn’ t:]’ II'“'IIIE:":IU:":n+1’ t:':]
= @1 Pl oy (8L (1) = ming py, (8), oy (0} 2 mind oy (8, dy (1)}

So,
dp (kt) >min{c,_; (t),d,_1(t)} , VneN

t
Applying (8)and (7), considering as t the number E' we obtain

dyg () =dqy g k- )>mln{0n 2( =), dn_ z( =)}
and
cYn—l(t) cTn 1(k )>m|n{6n 2( ) n— 2( )}

By induction we have
. . t t
dn(kt)Zmln{csn_l(t),dn_l(t)}2mln{cn_z(E),dn_z(E)}2...2
> mi t d t
—mln{01(kn—_2), 1(kn—_2)}
or
. t t
dn(t)Zmln{Gl(kn—_l),dl(kn—_l)}, VneN.
In the same way
t
palt) 2 minfo ()i (- )
and
> mi t d t
Gn(t)—mln{ﬁﬂkn—_l)f 1(kn—_1)}-
Thus, for YneN, t>0 we have

t
My (X, Xpa1,t) 2 min{M3(z4,25,—— k ) My (X1,Xp,—— o —)}

t
M2 (Yn,Yn+1,t) Zmin{Ms (29,25, —— = —hMalx, X0, —— = —
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. t
M3(Zn pzn+1lt) > mln{M?, (21 122: knil )lMl(Xl IXZ IF)}

But lim %:oo because k €(0,1) and applying (FM-6) we get

n—oo kN~

t t
lim 61(—=)= lim M3(z1,2,,—) =1

n—»o0 kn_:l n—0 kn_1
and

lim dy(——) = fim My (xq,Xp,——)=1

n—o0 knf1 n—o0 kn71

Consequently,

lim My (Xp, X1, t) = M My (Y, Vet t) = lim M3(z,,2049,1) =1
N—0 n—0 n—00

Now, for all n and p, we usethe Definition 2.3, (FM-4) obtaining

t t
Ml(xn Xnip )= Ml(xn Xn+1 ’E) * Ml(xn+1lxn+2 IE) ok Ml(xn+p—1lxn+p't)

P
When n tends to infinity, we have

lim My (Xpop,Xn,t) = 1%L, *1
oo 1( n+p’~n ) >

Concluding that, lim My (x,.p,X,,t)=1.
n—0

This shows that {x,} is a Cauchysequencein X.We can show in the same way that {y,} and{z,}, are

also Cauchysequences in YandZ, respectively. Thatis,

lim x, =aeX, limy,=Be€Y, limz,=yeZ.
n—o0 n—o0 n—aoo

Suppose that S is continuous. Then, since z, =Sy,, taking thelimitwe have SB=vy (9)

Applying (1) we get
M (RSB, Xp41,kt) =My (RSB,RSTx,,,kt) =

Z(Pl(Mz (Blyn+llt)lM3 (SBIZ["H—llt))Ml(Xn IRSBIt)IMl(Xn Ixn+llt))
Now, when n tends to infinity, using (9) we have
Ml(RSBla;kt) = (\Dl(llllMl(al RSB;t);l)) = M]_ (G’IRSBI t)
This means (Lemma 2.10) that RSP=a (10)

And from (9) we get
Ry=a (11)
Using (10)and (2), we obtain
M gTen . 1) = Mo (TRSE, TRSy . )
2 (M 3030, 5y, 1, MRS, xy, ), My (. T, £, Moy, e, B
Letting n tend to infinity we take
M, (Ta, B,kt) = @, (1,1,M, (B, TaL, t),1) =M, (Ta, B, 1) .
Thus, Tao= (12)

Next, from (9),(11) and (12), we have
TRSB=TRy=Ta =,

STRy=STa.=SB=vy,
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RSTaa=RSB=Ry=a.
So, a is a fixed point for RST, 3 is a fixed point for TRS and y is a fixed point for STR.
To prove the uniqueness, we suppose that o' is another fixed point of RST .Applying (1) for y=Ta
andx=0a', we have
oo it = Bl (RS Te, BET o k) =
2 oy (M Toe, Tt £, WL (3T e, BT e ] £, B, (o, BET e, 1), MW pCee L BT oo, £
= (8o Toe, Toe ' £, Ma3T e, 3T o, £, By, o 1,10
Applying now 3.a and 3.b for ¢, obtain
My (o, ', kt) > min{M, (Ta, Tar', t), M3 (STaL, ST, t)} (13)
Next, from (2) it follows that
WlorTao, Tou', k) = Mo TRST o, TRST o', ki) =
Z g (M5 (3T e, 3T o, 1), DI CRET o, BST o 1), Wl (T, TRET o, t), W Toe, Tee L ) 2
= oIl (3T, 3T e, ), blyla, o 1), Wl o0 Tae, T, 1,1

Thus, we have, M,(Ta, Ta,kt) >min{M3(STa, STa',t),My (o, o', 1)} (14)
Now, from (13) and (14) and from the fact that M, (To, Ta',t) > M, (Ta, Ta', kt) ,we have
My (o, o', kt) > M3 (STa, STa, t) (15)

Finally, from (3), it follows that
Wi3T o, 3T, k) = M (3TRST o, 3TR3T o k) =
= g o, o 1), WDy (Ton, Toe!, £, M5 (3T @, 3T, ), W03 T o L3 T e, £1)
= g (B (o, o', £, M (T, Tee', 1), M (3T e | 3T, t),1)
Hence, M3(STa, STa!, kt) > min{M; (at, o', t),M, (T, Ta', t) } (16)
Again, from (14), (15) and (16)and from the fact that M3(STo,STa',t) > Mj3(STa, STo,kt) we have
Moo k) = Ma3Te, 8Te ' ) 2 My (3T e, 3Te k) 2
= min] Myla, o, ), Mo T, T £} = Wy Ta, T 1) 2
# Mo To, To, k) 2 mind W03 T o, 3T o, £, Mydo, ot} =
= M5 (3T, 3T, t)
Fromtheinequalities My (a,a’,kt) >Mjz(STo, STa,kt) > M3 (ST, STa, t) it follows that
STa=STa', M3(STa,STa',kt) =1 and My (o, 0, kt)>1.
So,a=0a'.
Thus, o is the unique fixed point for RST. In the same way we show that [ is the unique fixed point for
TRS and y theunique fixed point for STR.This completes the proof.

Theorem 4.3 Let (X;,M;,®;) be m complete metric spaces and let T;m mappings such that
T X; > Xjq fori=12,...m-1, T, : X, >X; and from which (m—2) are continuous. If for some
ce(0,1) and @; € D,y,,1 the inequalities are satisfied:
M (T, T 1 Ty, Ty Ty ToTyzy o) 2
- 1[(M1{X1sTme-1---szzst:lsmlt:xl=Tme-1---T1X1=t]=M2{Xstlxlstl J
W (Toxy, To Toxg th o M (T Ta ToTaxg, Ty Tz Ta Ty ) "

for all x; eX; andx, €X,
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M, (T T, T, Ty, T,T,. TyT,x,, ct)2

T, T,

m Cm-1

CTE,, t], M3{x3,T2x2, t],

M,
0| My (Txts, ToToxg, thes My (T T g Ts%3, Ty Ty Ty %, 1)

{er T T 3%, tl M, {er 0
M T, T, Tx,, T T Ty, 1)

forall x, eX, and x3 € X3, in general

(2)

MAT T TTT ) Tty TouToy IO, T )2

r-1°r T

M (X, T T BT Tax LM, (1, T T,

17 I-1

i A

M]’H [?:'-I-l"'}-l-lr TI-I-].TIXIF ‘t}r"'rMn {TrIT

BT Tx ) A, (X, T ),
JRPR P SR S SR I o8 f},

Ml {Tnf:r—l' "1?:'4-1 Xras TnTn—l' "f:'xn ILMI {Tlf:rfn—l" 'f:'-l-l FeRy TITMTM—I' "fon I]! tera
M T T BTy Tk ToaToy TTT T 8)

TH -1 K1

forall x; €X;, X371 €Xjq for i=3,...m-1,and

M, (T, Ty T Ty Ty Ty T

mT&m?

W (Toy, Ty Tt M1 (T Ts - To%1, T s T T T £

v [h'lIm{XmsTm—lT e Ty M (e, Ty T -z---T1mem=th1{X1=Tme=tlJ
(m)

for all x; €Xq and x,,, €X,,,, where ¢; € ®
T T Tt T2 e

m+3

fori=1,2,..m.Then the maps T, T,,_1.. Ty,
TaTio- T T Tme1--Ti o Te1T—2---T1 T,y have unique fixed point

o €Xq, 0y €Xy, ., & €Xj, -y Uy € Xy, Fespectively. Further,

To; =04 fori=1,...m-1land T,o, =01 .

This theorem is proved in the same way as the theorem 4.2.

5. COROLLARIES

Corollary 5.1 From Theorem 4.3 for m=2we
take the Theorem 4.1 which generalizes and
fuzzyfies the Theorems Fisher [5], Popa [13] etc.
Corollary 5.2 If in Corollary 5.1 (theorem 4.1) we
take @1 =@, =@ Dz where

o(ty,ty,t3) =min{ty,t,,t3} we obtain the
theorem which fuzzyfies the Fisher theorem.
(Theorem 1.[5]) for metric spaces.

Corollary 5.3 Ifin Corollary 5.1 (theorem 4.1) we
take @1 =@, =@ e D3 where

1
(P(tl,tz,t3) = [min{tltz,tlt‘:;,tzts}]é ,we Obtain
the fuzzyfication of Popa result (Theorem 1[13])
for metric spaces.
Corollary 5.4 If in Corollary 5.1 (theorem 4.1) we
take @1 =@, =@ D3 where

1
olty,ty,t3)= [min{tp,tg,tg}]ﬁ ,p>0,we obtain
a generalization of Corollary 5.2 whichis taken
for p=1.
Remark 5.5 We can obtain many other similar
results for different ¢ .
Corollary 5.6 From the Theorem 4.3 for m=3
we take the Theorem 4.2 which generalizes and
fuzzyfies the Theorems Nung [12], Jain et al [8],
Kikina[9], etc.
Corollary 5.7 If in theorem 4.3 we take
P=01 =@ =93 €Dy where
o(ty,ty,t3,t4) =min{ty,t,,t3,t4}, we obtain the
theorem which fuzzyfies the result of Nung [12]
for metric spaces.
Corollary 5.8 If in theorem 4.3 we take

P=01 =Py, =3 €D, where
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1
(P(tl,tz,tg,t4) = [min{t1t3,t1t4,t2t3,t2t4}]é ,we
take the theorem of Jain, Shrivastava and Fisher

(Theorem 2 [8]).
Corollary 5.9 If

1
olty,ty,t3,t,) = [min{tp,tg,tﬁ}]A , we take the
result of Kikina (Theorem 2.1[9], F=0) for the
metric spaces and for

i
(p(tl,tz,t3,t4):[min{tp,tg,tg,tﬁ}]A we take its

generalization.

Remark. As corollaries of these results we can
obtain other propositions determined by the
form of implicit functions.
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