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ABSTRACT

The algebra of polar subsets of a le- and poe-semigroup is considered. It is considered the set 3
of the subsets A of S which are equal to the bipolar of A. It is proved that ¢B, partially ordered by set
inclusion is a complete Boolean algebra.
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PERMBLEDHJE

Né kété punim &éshté shqyrtuar algjebra e nénbashkésive polare té njé le- dhe poe-gjysmégrupi.
Shqyrtohet bashkésia B e nénbashkésive A té S té cilat jané té barabarta me bipolarin e A. Provohet
qé B, pjesérisht e renditur nga pérfshirja e bashkésive, éshté njé algjebér e ploté e Bulit.

1. Introduction and preliminaries

The ordered semigroups (:po-semigroups) and I-semigroups have been studied by a lot of math-
ematicians. The concept of I-semigroup is due to Fuchs [4] and G. Birkhoff [2]. Birkhoff arose a problem
(prob.123, pp. 346) concerning the study of a special class of I-grupoids. This problem has been studied
by different mathematicians for m-distributive lattices such as Choudhury [3] and Kehayopulu [4]. A
part of those results have been extended and generalized recently in ve-I'-semigroups [5]. In this paper
we are dealing with poe- and le-semigroups. Motivation for this paper has been provided by several
results obtained in [1, 6, 7, 8, 9]. We study the algebra of polar subsets of a le-semigroup and poe-semi-
group. The results of this paper can serve as an object of a further study, in extending and generalizing
them in ordered I'-semigroups, which are widely studied recently by the author and other authors
in several papers. Firstly, we introduce the concept of Oy, -disjoint (resp. x,-prime) elements of a poe-
semigroup (resp. le-semigroup) and some related properties are investigated. In section 3 we introduce
the concept of polar and bipolar of a subset A of a le-semigroup S and investigate different properties
concluding with the main theorem in which we show that the set B of the subsets A of S which are
equal to the bipolar of A, partially ordered by set inclusion, is a complete Boolean algebra. In section 4
we put an equivalence relation ~ in a distributive le-semigroup and we prove that the set of correspond-
ing equivalence classes S is a distributive le-semigroup and there exists an isomorphism between S and
¢B. In the last section, we study, investigate and generalize the same properties in poe-semigroups.
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An ordered semigroup (: po -semigroup) is an ordered set (S,=<) at the same time a semigroup
such that forall @,b,xES, a<b=> xa < xb and ax < bx.
A poe -semigroup isa po-semigroup having a greatest element e.

A le-semigroup (S, V,A) is an algebra defined as follows:

1. <S; > is a semigroup;

2. (S 3V A> is a lattice with a greatest element which is denoted by e throughout this paper;
3. forall a,b,cES, a(bvc)=abvac and (bvc)a=bavca.

When S is a semilattice under vV with a greatest element e, itis called Ve -semigroup.

2. X, ~PRIME ELEMENTS OF le -SEMIGROUPS
Let S bea poe-semigroup and X, €S . We shall say that the elements a,bES are o -disjoint

with respect to X, (or a, -disjoint) denoted by aTrob , if and only if for every element xES with

X=a and x = b, implies x =X, [7].
Let S be a /e-semigroup and x, ES. We shall say that the elements @,hES are prime with

respect to X, (or X, — prime) denoted by aHxOb Jif avb=x,[7].

The elements a,,00 €A of a poe -semigroup (resp. le-semigroup) S will be called pairwise
a, -disjoint (resp. pairwise X,-prime) if and only if aiT)CO a; (resp. ainoa ;) for every i, jE A with

i=j[7]
The following proposition holds true.
Proposition 2.1. Let S be a le -semigroup, x, €S and a,DES . The following statements are equivalent:

1.aT b.
0
2. aHXOb and x, =e.
Proof. 1.=> 2. Let aTXOb . Ttis clear that this implies aonb . Let now aTXOb and yES, then, since
aHXOb ,wehave X, =za,b.If z=yV X, then z = a,b . Therefore z = X,,. Thus we obtain X, = y,

thatis, x, =e.
2.=1. Let x&€S,x=a,b. Then, since 2. is true, we have x =a v b =X, and x = X, . Therefore

X = X, . This completes the proof.

The following proposition is an immediately corollary of the above proposition.
Corollary 2.2. Let S be a le-semigroup and X, ES'. If there exist the elements a,bE S such that a'[;_ob ,
then for every X, yES, xTXOy if and only if xHXOy.

Proposition 2.3. Let S be a poe -semigroup and x, €S . The following properties hold true:
1. if aTxOb , then bTan .

2. if aT b and a=b, then b=X,.
3. if aTxOb,a <a and b<b',then a'TXob’A
4. ifthe elements a, €ES,iE ] are pairwise a, -disjoint and if for the elements
b E€S,i€l,a, <b, forall i€, then the elements b,,i €/ are pairwise a, -disjoint.

5. X, =e if and only if aTxOxo forall a€ES.
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Proof. The properties 1., 2. and 3. are obvious.
4. We have that a,.TXOaj, a, < b[ and a ;= b i for every i, jE€I with i # j. Therefore, because of

3., we obtain b,TXOb,.,for every i, JE€I with i = j.
5. Let x,=e and aE€S. Let yES such that ¥y =a,x,. Then it is clear that y =X, and
therefore, a’I;O X, . Conversely, if aTxO X, for every aE€S, then xOTXO X, . Thus for all yES, y=x,

implies y = X, thatis, x, =e.
It is obvious the following proposition.

Proposition 2.4. Let S be a le -semigroup. The following properties hold true:
1. if aHxOb , then bHXOa .

2. if aonb and @ <b,then b=x,.
3. X, = e ifand only if aonxo forall aE€S .

Theorem 2.5.If S isa Ve -semigroup with a unit i, then
1.if all,b,c =i and aczb (or cazb), then c = b.
2.if all,b and c<i,then avbc=avc (and avch=avc).
If moreover, S isa le-semigroup, then the following properties hold true:
3. a) suppose that the elements a; €S;j=1,...,n,n=2 are pairwise commutative and i -prime
n
with | |a; =c.If a, =i forevery J=1,..,n, then a, = c forevery j=1,..,n.
=
b) for n =2 the converse of a) is true.
c) for n> 2 the converse of a) is not true.
4. under the same hypothesis as in 3. a) hypothesis for the elements @, €S; j =1,...,n,n =2 we

n

have Ha/ =i ifand only if a; =i forevery j=1,...,n.
=

n
5. let that the elements @, €S j=1,...,n are pairwise i-prime with a; =a and that there
j:

m
exist elements b, ES;A =1,...,m pairwise commutative and i -prime with HbA =a,(Isus<n).

Then the elements a,,...,a,_,,b,,...,b, ,a

> u-1° mo " u+lot”

.,a, are also pairwise I -prime and
u-1 m n
[ i) 112 )
= = i
Proof. 1.Let all.b,c=i and ac = b, then
c=(avb)yc=acvbczbvb=hb.
2.Indeed: avc=av ((avb)c)=avacvbc=avbc (since ac<a).
3.a) The elements a;, j=1,..,n,n=2 are pairwise commutative and i -prime. Therefore:
a, Nay, A...Na, = aa,..q,
If we suppose now that there exists ¢ (l=f=n) with a,=c, then a,=a, Aa, A...Aa,.
Therefore, a; = a, for every j=1,..,n with j=7.Butforevery j=1,.,n with j=t, alla,
thus a; =i forevery j= 1,...,n with j =t (Proposition 2.4). This is impossible.

b) It is obvious.
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¢) Let a, €S, j=1,..,n,n>2, where a #i,a, #i and a, =...=a, =i.By one side, since 3. a)
is true, we have a, A a, A...Aa, = ¢ and therefore, ¢ = a,. But q, <i (since aIHiaj for every j =1
and a, #1), thus ¢ =1, that is, ¢ # a,,...,c # a,. By the other side, ¢ = aa,, where a, #i and

a, #1.This and 3. a) imply @, # ¢ and a, # c. Therefore, ¢ # a,,...,c # a, and this completes the
proof of the property.

4. Let ]_la/. =i.Then @, Aa, A...Aa, =aa,..a, =i.Therefore, i<a; forall j=1,..,n.Since
l',
a;,j=1,..,n are pairwise i-prime, we have a; <i, for all j=1,..,n. Therefore, a, =i for all

Jj=1,...,n. The converse is obvious.

5. The elements bAES,)\,Il,...,m are pairwise commutative and i-prime. Therefore,

iu

Ab, = Hb}t =a,.Thus wehave a Il,a,,a, <a;, and a, <b,,...,b, forall j=1,..,n with j=n.
=1 =

Therefore, by Proposition 2.4, we have a ILb,,...,b, forall j=1,...,n with j = @ which implies the

property.

Remark 1. (a) The property 4. of the above theorem implies that 3. makes sense only for ¢ =i .
(b) The property 1. remains true in case S isa Ve -semigroup.

3. ALGEBRA OF POLAR SUBSETS OF A LE-SEMIGROUP
Let S bea le-semigroup, x, €S and A = asubsetof S .Then the following set defined by

AXIOI = {xES:xHXOa,VaEA}
: II IT.\I1 . .
is called HXO -polar of A.1f AXO #= (J, then the set (AXO )Xo is called on -bipolar of A and we

denote it AII(;I I .

Remark 1. The on -polar and on -bipolar of A are different in general.
Proposition 3.1. Let S be a le-semigroup, x, €S and A = asubset of S . Then AXI(_)I = & if and only if
X, is the greatest element of A}} If A}O] = (J , then
a) X, = a forevery a€E A andb) x, = x for every XEAXIOI .
But a) implies X, vV a = x, for every a&E A, that is, X, EAXI;I. Therefore, X, is the greatest

element of AXI} . The converse is obvious.
Proposition 3.2. Let S be a le-semigroup and X, €S . The following statements are equivalent
1. x,=e.

2. forevery @ = AE P (S),x,E AXI} , where @(S) denotes the set of all subsets of S.

3. forevery @ = AE P (S),AXIOI = .

Proof. 1.= 2. Indeed: if x, = e, then xOona ,forall a€E A and forall J = AE P (S). This implies

the 2.
2.=>3. Itis obvious.
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3.=>1. Indeed: if 3. is true, then {a}}oI = (J for all aES . Therefore, X, E{a}}} forall a€ES

(Proposition 3.1). Thus X, = a forall aES, thatis, x, =e.
Let S be a le-semigroup. If AC S, the polar of A, denoted by A", is the set defined by
A ={xES:xva=eNa€ 4= A"
The set A" is called the bipolar of A.

Proposition 3.3. Let S be a le-semigroup and & = A, B C S . Then the following hold true:
1.if ACB,then 4" D B".
24C 4"
3.4 =47
4. ANA" ={e}.
Proof. 1. It is obvious.
2.If aEA and xE A, then aVv x =e. Therefore aE A" .
3.By2,wehave 4" C 4™ By1,since AC 4™, weobtain 4 DA
4. We have A'N A" Clel. Infact: if yEA NA", then yva=e, forall aE A", but then
YV y=e,thus y =e.By Proposition 3.2, we obtain eEA N A~ .
An immediate corollary of Proposition 3.2 and 3.3 is the following proposition:
Corollary 3.4. Let S be a le-semigroup and X, ES . X, is the greatest element (=e) of S if and only if for
every D= ACS, AXI;I ﬂAH n

o ={x,}. In following, for a le-semigroup S and x, ES we will

denote 211 = {All: 0= AC 5} and B={4CS: 4= 47},

Corollary 3.5. Let S be a le-semigroup. Then B= /?Ln .
Proof. If A" € 4", then A" =A"" (Proposition 3.3(3.)). Therefore A" € @B. Conversely, if AEB,
then A= A" Therefore AE ﬂ(n .

Corollary 3.6. Let S be a le-semigroup and @ = AC S . Then the bipolar A~ of A is the smallest element
of B containing A .

Proof. Corollary 3.5 implies that A" is an element of B. Proposition 3.3(2.) implies that A€ B. Let
assume that there exists A'E B, where AC A'C 4™ . Then, Proposition 3.3(1., 3.) implies that
A" D(A) DA™ = A" Therefore (4') = A".Since A'EB, thenwehave 4'=A4".

Proposition 3.7. Let S be a le-semigroup and A, € B,iE I . Then nAl. €3.

icl

Proof. For all the families {4, : i€} of subsets of S we have (U/L ) = ﬂ(Al)* (4)
el el

*

Indeed: let xE(UA[,) . This is equivalent with xva=e, VaEAi,ViEI . That is,
i€l
* * (v =0y =)
XE(4) Vi€l . So, xEﬂ(AJ By (A), wehave: & 7 =
&l = (U(A,)') (Proposition 3.3(3.)

o]0
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Corollary 3.8. Let S be a le-semigroup and {A, :i €1} a family of subsets of S . Then:

o)
el
2. if, furthermore 4, € B forall i€/, then (ﬂAl.) = (U(Ai)*) .
il &l
Proof. (1).

*

(U(A,)*”) = [)(4)™ (Proposition 3.7(A))

el

= ﬂ(Al_)*(Proposition 3.3(3)

il

= (UAI) (Proposition 3.7(A)).

@.Infact, [ 4, =()(4)" = (U(A,)*) (Proposition 3.7(A)). Therefore (ﬂA[) (U(A,.)*)

Definition 3.9. A nonempty subset A of an ordered semigroup S will be called semi-filter in S if and only if
z€A and xES with x = z , implies xE 4.
Proposition 3.10. Let S be a le-semigroup. Then every AE B is a semi-filter in S .

Proof. If AEB,aE A and bES with b=a,then bvx=av x=e for every XEA . Since e is

the greatest element of .S, then bv x = ¢ forevery xE A thatis, b€EA™ = 4.
Proposition 3.11. Let S be a le-semigroup and A,, A, are semi-filter in S . Then:

(A NA4)" =(4)" N(4)".
Proof. From Proposition 3.3(3.), it follows:
(4 N4)" CA4)" N
Now it is enough to prove that: xE(4,)" N(4,)" and yE(4, N 4,) imply xv y=e.
From Proposition 3.2 and Proposition 3.10, it follows that (4,)",(4,)" and (4, N 4,)" are semi-
filter in S . We have the following:
xvy=xE(4) N(4)" ,thatis, xv yE(4) N(4,)",
xvy=z=yE(4NA4),thatis,xv yE(4 NA4,),
then x v yE(4,) N(4) N4 NA4) ...®1).
Let now uE A4, and vE4,. Since 4,i=1,2 are semi-filter in S and u Vv v=u,v, it follows
that: uvVvEA NA,, then uvvE(A NA)" (Proposition3.3(2) ... (2).
From (1) and (2), we have XV y Vu v v=e (Proposition 3.3(4.), thatis, XV yvuE(4,) . Also,
XVyvuzxvyeE(4,)  thatis, xvyvue(4,) .

From Proposition 3.3(4.), we have xV yvu=e. Also, xV yE(4,) and xv yE(4,)" . Then
x Vv y=e (Proposition 3.3(4.).
Theorem 3.12. Let S be a le-semigroup. Then the set B partially ordered by set inclusion is a complete

Boolean algebra.
Proof. It is clear that the set &, partially ordered by set inclusion, is a partially ordered semigroup. Let

136 Www.aH)-s}llzenca.org



ALGEBRA OF POLAR SUBSETS OF AN ORDERED SEMIGROUP

now A E®@,iE] . From Proposition 3.7, it follows that ﬂA €3, then A4, = ﬂA (since if SEB

il i€l

with SC A4, ,ViE€], then SC ﬂA Also, from Proposition 3.3, it follows that VA (UA )
il il

Therefore, @ is a complete lattice.

From Proposition 3.3(2.), it follows that S € B, thatis, S is the greatest element of 3. Since

(1) e€ A4 for every AE B and
2) e€E3,

then {e} is the least element of @.Indeed: by one side, eE S ’ (Proposition 3.2). By the other side, if
eES’, then xv y=e forall yES.Tt follows that for y =x we have x =e . Therefore S" = {e}.
From this and Proposition 3.2, it follows that {e} € @. (1) can be taken as an immediate consequence
of Proposition 3.2.

The le-semigroup @ is complemented as lattice. Indeed: if 4€ @, then A’ is an element of @
(Proposition 3.2), such that:

ApA = AN A =47 N A" ={e}(Proposition3.3(4.) and

wok | E

AVA = (AU A" =(4"NA") (Proposition 3.7(A))
= {e}" = S (since e is the greatest element of S,
we have for all xES,xE {e}").
It remains to show that the /e -semigroup @ is distributive. Indeed: let 4,, 4,, A, € B, then
Ay (A4 yA)=A4N(A4NA4)" =4)" N4 U4)"
= (4, N (4, U 4,)" (by Proposition 3.10 and 3.11)
= (4N AU NA)) =4 Ad)V (4 A4).

Next, consider the case where S is a distributive /e -semigroup.
Proposition 3.13. Let S a le -semigroup and i the identity element of S . Then every element of /Zn isa
convex le -subsemigroup of S .
Proof. Let A"' € 1" ,x,,x,E A" and aE A, then xI1,a and x,I1,a.But then x,x,IT,a,x, A x,I1,a
and x, Vv x,II.a. Therefore, Xx,,X, EA,.H implies X, X,,X; A X,,X, V X, EAL.H. Thus AI.H is a le-
subsemigroup of . It remains to show that A4 is convex. In fact, if x,,x, EA" and yES with
X, =y =X, then for all a€A4, i=xvasyvasx,va=i. Thus for all a€EA, yva=i.

Therefore y € A,.rI .

Remark 2. For every [e-semigroup S and X, €S, every element of ﬂ}} is in general convex.

The following theorem is an immediately corollary of Proposition 3.13, Theorem 3.12 and
Corollary 3.5.
Theorem 3.14. Let S be a distributive le -semigroup with e as identity element. Then the set B partially
ordered by set inclusion is a complete Boolean algebra and every element of the algebra @ is a convex le-
subsemigroup of S

4. THE EMBEDDING OF §' IN &
Let S be a distributive le-semigroup. For a,hES, we put a~b if and only if " =b" . Itis
clear that = is an equivalence relation in S'. Let §' be the set of corresponding equivalence classes

and a” the class containing a .
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Proposition 4.1. Let S be a distributive le -semigroup. Then S is also a distributive le -semigroup.
Proof. We define in .§' an order relation as follows:

a" <b" ifandonlyif a Ch".
It can be easily seen that this definition is independent from the representative elements a,b of
a",b". The mapping S3a—=>a"€YS is isotone. Indeed: if a,bES,a<b and XEa’, then
e=xva=xvb. Therefore e=xVvb, that is, xEb . This implies that (avb)" =a",b" and
(anb) =a",b" . If ¢"ES with ¢" =a",b" and xE(av b)", then xV (a Vv b)=e. This implies
bvx€d Cc",so (bvx)vc=e.Butthen cV XEDb" C¢". Therefore cv x=e, that is, xEc"
and if ¢"€S with ¢"=a",b" and xEc, then, since xEa Nb’, we have
xv(anb)=(xva)a(xvb)=e. So, xE(anb). Thus, § is a le-semigroup with
(avb)'=a"vb" and (a Ab)" =a" Ab". Also, S is distributive. Indeed:
a"Anb"vc)y=a"abve) =(an(bvc)
={anb)v(anc) =(anb) v(ianc)
=(a" ab")v(a" nch).

Proposition 4.2. Let S be a distributive le -semigroup. Then the following hold in B:

1. (anb) =d ab".

2. (anb) " =a"vb”

3.(avbh)" =a" b

4. (avb) =d vb'.

Proof. 1. Wehave: xE(anb) < xv(anb)=(xva)r(xvh)=e<e<xva and

ok

esxvbee=xva=xvb<s xEd Ab .

2. We have (anb) =da Nb ={alU{b}) ={a,b}". But {a,b}Ca” Ub". So,
{a,b}" 2(a" Ub")". By the other side, if xE{a,b}, then xIT,a,b. So, xEa =a” and
xED =b"", thenforevery yEa" Ub", xI1,y. Therefore xE(a" Ub™) . Hence we have

@nb)” = (@ Ub™)”
VB

3. By the Proposition 3.3(2.), 3.10 and Corollary 3.5, we have avbh=a€a",so avbEd" . In
similar, we have avb=bEbL", so avbEb”. Then avbEa Nb E®B, thus
(avb) C(a" Nb™Y =a" Nb™.

Let xEa Nb" and yE(avh), then yvavb=e. Thus xV yvavh=e. Therefore
XVYyVva€Eb . But xVyvaz=xEb", so xvyvaEb” Also, xVyva=e andso xV yEa .

But xv y >xEa" andso x Vv yEa**.Therefore xvy=e,thatis, xIT,y.
4. We have

ok ok |k

(avb) =(avb)” =(a" rb") (by(3))
— (a* U b*)**

Corollary 4.3. Let S be a distributive le -semigroup. Then every element of S is a convex le -subsemigroup

of S.

Proof. Let a"E€S,b,cEa" and xES with b<x=<c. Then a" =b"Cx Cc =da. Therefore

* *
=a vb.

x = a*, thatis, xEa" . Thus a" is a convex set. More, a” isa le -subsemigroup of S'. Indeed: let
b,cEa". Then b =da =c’. By Proposition 42(1,4), we have (bac) =a rnd =da and
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(bve) =a"va =(a")" . Therefore, bAcEa" and bv cEa".

It is clear that @" = b" implies @ # b (since @ =bh", then a =b). Then by Proposition 4.2 (1.,
4.), it follows that the mapping S35 a" — a' EBisan isomorphism.

5. ALGEBRA OF POLAR SUBSETS OF A POE-SEMIGROUP
Let S bea poe -semigroup, x, €S and A = asubset of S. Then the following set defined by

A;f = {xES:xTXOa,VaEA}

is called T"o -polar of A .1f A;E # (J, then the set (A:[O‘);IO‘ is called Txo -bipolar of A and we denote it
AT
%0
Let we denote 6”}0‘ = %QS:A— A.: T}

The following proposition can be proved in similar way with Proposition 3.3.

Proposition 5.1. Let S bea poe -semigroup, X, €S and A,B C S The following hold true:
Lif AC B, then 4] 2B

2. AC Ag T
3. A =T TT
0 )
T~ ,TT
4. Axo N Axo C{x,}.

- . T~ ,TT_ .
Proposition 5.2. Let S be a poe -semigroup, X, €S and AC S . Then A"o N A'*o ={x,} ifand only
if x,=e.

Proof. Let A;E N A;}; T_ {x,}, then X, EA;E T. Therefore, for all a EA;{ ; xoTan . Thus xoTxoxo ;

so X, =e.Now, if X, = e, then for all ACS, X, € A;E, therefore, the converse is true.
Proposition 5.3. Let S bea poe -semigroup, Xy €S and AC S . Then A;E is semi-filter in S .
Proof. Let ZEA;E and xES with x=z.If a€E A and b = x,a, then, since b = z,a, where a € A

and ZEA.:{' it follows that b = x,, so xEA;f .

Proposition 5.4. Let S bea poe -semigroup, x, €S and A,,i =1,2 semi-filterin S . Then

TT TT TT
(4 N4, )xo =(4, )xO N (4, )xo :
Proof. Proposition 5.1 implies

TT TT TT
anay) Tew! Tnu! T
Let now xE(Al);S Tﬂ(A,Z)z T,yE(A1 ﬂA,Z)z and a €S with a =Xx,y. We have to show

that a = x,. First, we have a€(4 )z T N (Az);l; T N4, N A2)£ (by Proposition 5.3). Let now
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T

:cO’

uEA,vEA4,. If z,tES with z=a,u and t=zv, then, since aE(4 N 4,), , it follows that

tE(AlﬁAz);E (by Proposition 5.3). But, t=z=u, so tEA4, and t=zu, so tEA,. Then

te€A NA, C(4 ﬁAz);IO‘ T.Therefore t=x,.

Thus, we showed that for all vE 4,, ZT‘OV , thatis, z E(Ag)g . By the other side, a €(4, ): T ;

so zE(A4,)T TX0 . Thus z = Xx,. Therefore, we have for all uE€ 4,, aTxOu , that is, a E€(4, );1; . But

aE(Az)z T,thus a=x,.
The following proposition can be proved in similar way as in Proposition 3.3 and 3.7.
Proposition 5.5. Let S be a poe -semigroup and x, €S . Then

1.if AC S, then A;E T is the least element in @’3: containing A .

. T, . T
2.if A,.E@O(IEI),then nA,E@XO.

iel
Proposition 5.6. Let S be a poe -semigroup. Then every AE 6’5 is a semi-filter in S'.

Proof. Let AE@T;IO‘,aEA,bES with bza,ZEA;E and tES with t=b,z. Then, since t=a,z,

en 7

where a&E A and ZEA’E it follows that f=x,. Thus, for all ZEA;E,bTxOZ. Therefore,

be A;f T_ A and this completes the proof.
In similar way as in the proof of Theorem 3.12 it can be proved the following theorem.
Theorem 6 Let S' be a poe -semigroup. Then 6}{ partially ordered by set inclusion is a complete Boolean

algebra.
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