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ABSTRACT

The algebra of polar subsets of a le– and poe-semigroup is considered. It is considered the set  B 

of the subsets A of S which are equal to the bipolar of A. It is proved that B, partially ordered by set 

inclusion is a complete Boolean algebra.
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PËRMBLEDHJE 

Në këtë punim është shqyrtuar algjebra e nënbashkësive polare të një le- dhe poe-gjysmëgrupi. 

Shqyrtohet bashkësia B e nënbashkësive A të S të cilat janë të barabarta me bipolarin e A. Provohet 

që B, pjesërisht e renditur nga përfshirja e bashkësive, është një algjebër e plotë e Bulit.

1. Introduction and preliminaries

The ordered semigroups (:po-semigroups) and l-semigroups have been studied by a lot of math-

ematicians. The concept of l-semigroup is due to Fuchs [4] and G. Birkhoff [2]. Birkhoff arose a problem 

(prob.123, pp. 346) concerning the study of a special class of l-grupoids. This problem has been studied 

by different mathematicians for m-distributive lattices such as Choudhury [3] and Kehayopulu [4]. A 

part of those results have been extended and generalized recently in ve-Γ-semigroups [5]. In this paper 

we are dealing with poe- and le-semigroups. Motivation for this paper has been provided by several 

results obtained in [1, 6, 7, 8, 9]. We study the algebra of polar subsets of a le-semigroup and poe-semi-

group. The results of this paper can serve as an object of a further study, in extending and generalizing 

them in ordered Γ-semi groups, which are widely studied recently by the author and other authors 

in several papers. Firstly, we introduce the concept of αx0
 -disjoint (resp. x0-prime) elements of a poe-

semigroup (resp. le-semigroup) and some related properties are investigated. In section 3 we introduce 

the concept of polar and bipolar of a subset A of a le-semigroup S and investigate different properties 

concluding with the main theorem in which we show that the set B of the subsets A of  S which are 

equal to the bipolar of A, partially ordered by set inclusion, is a complete Boolean algebra. In section 4 

we put an equivalence relation ≈ in a distributive le-semigroup and we prove that the set of correspond-

ing equivalence classes S is a distributive le-semigroup and there exists an isomorphism between S and 

B. In the last section, we study, investigate and generalize the same properties in poe-semigroups.
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An ordered semigroup (: po -semigroup) is an ordered set ( , )S !  at the same time a semigroup 

such that for all , ,a b x S! ,  a b xa xb! " !  and .ax bx!   

A poe -semigroup is a po -semigroup having a greatest element e . 

A le-semigroup ( ; , , )S ! " #  is an algebra defined as follows:   

1. ;S !  is a semigroup;  

2. ; ;S ! "  is a lattice with a greatest element which is denoted by e  throughout this paper;  

3.  for all , ,a b c S! , ( ) =a b c ab ac! !  and ( ) =b c a ba ca! ! .  

 When S  is a semilattice under !  with a greatest element e , it is called e! -semigroup. 
 

2. 
0
x -PRIME ELEMENTS OF le -SEMIGROUPS 

Let S  be a poe -semigroup and 
0
x S! . We shall say that the elements ,a b S!  are ! -disjoint 

with respect to 
0
x  (or 

0
x

! -disjoint) denoted by 
0
x

a b! , if and only if for every element x S!  with 

x a!  and x b! , implies 
0

=x x  [7]. 

Let S  be a le -semigroup and 
0
x S! . We shall say that the elements ,a b S!  are prime with 

respect to 
0
x  (or 

0
x prime! ) denoted by 

0
x

a b! , if 
0

=a b x!  [7]. 

The elements ,a A! ! "  of a poe -semigroup (resp. le -semigroup) S  will be called pairwise 

0
x

! -disjoint (resp. pairwise 
0
x -prime) if and only if 

0
i x j
a a!  (resp. 

0
i x j
a a! ) for every ,i j A!  with 

i j!  [7]. 

The following proposition holds true. 

Proposition 2.1. Let S  be a le -semigroup, 
0
x S!  and ,a b S! . The following statements are equivalent:   

     1. 
0
x

a b! .  

     2. 
0
x

a b!  and 
0
=x e .  

Proof.  1. 2.!  Let 
0
x

a b! . It is clear that this implies 
0
x

a b! . Let now 
0
x

a b!  and y S! , then, since 

0
x

a b! , we have 
0

,x a b! . If 
0

=z y x! , then ,z a b! . Therefore 
0

=z x . Thus we obtain 
0
x y! , 

that is, 
0
=x e . 

2. 1.!  Let , ,x S x a b! " . Then, since 2. is true, we have 
0

=x a b x! "  and 
0

x x! . Therefore 

0
=x x . This completes the proof. 

The following proposition is an immediately corollary of the above proposition. 
  

Corollary 2.2. Let S  be a le -semigroup and 
0
x S! . If there exist the elements ,a b S!  such that 

0
x

a b! , 

then for every ,x y S! , 
0
x

x y!  if and only if 
0
x

x y! .   

Proposition 2.3. Let S  be a poe -semigroup and 
0
x S! . The following properties hold true:   

1. if 
0
x

a b! , then 
0
x

b a! .  

2. if 
0
x

a b!  and a b! , then 
0

=b x .  

3. if 
0
,

x
a b a a!" #  and b b!" , then 

0
x

a b! !" .  

4. if the elements ,
i
a S i I! !  are pairwise 

0
x

! -disjoint and if for the elements 

, ,
i i i
b S i I a b! ! " , for all i I! , then the elements ,

i
b i I!  are pairwise 

0
x

! -disjoint.  

5. 
0
=x e  if and only if 

0
0
x

a x!  for all a S! .  
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Proof. The properties 1., 2. and 3. are obvious. 

       4. We have that 
0

i x j
a a! , 

i i
a b!  and j ja b! , for every ,i j I!  with i j! . Therefore, because of 

3., we obtain 
0

i x jb b! , for every ,i j I!  with i j! . 

        5. Let 
0
=x e  and a S! . Let y S!  such that 

0
,y a x! . Then it is clear that 

0
=y x  and 

therefore, 
0

0
x

a x! . Conversely, if 
0

0
x

a x!  for every a S! , then 
0 0

0
x

x x! . Thus for all y S! , 
0

y x!  

implies 
0

=y x , that is, 
0
=x e . 

It is obvious the following proposition. 
  

Proposition 2.4. Let S  be a le -semigroup. The following properties hold true:   

1. if 
0
x

a b! , then 
0
x

b a! .  

2. if 
0
x

a b!  and a b! , then 
0

=b x .  

3. 
0
=x e  if and only if 

0
0
x

a x!  for all a S! .  

Theorem 2.5. If S  is a e! -semigroup with a unit i , then   

1. if ,
i

a b c i! "  and ac b!  (or ca b! ), then c b! .  

2. if 
i

a b!  and c i! , then =a bc a c! !  (and =a cb a c! ! ). 

 If moreover, S  is a le -semigroup, then the following properties hold true: 

 3. a) suppose that the elements ; = 1,..., , 2ja S j n n! "  are pairwise commutative and i -prime 

with 
=1

=

n

j

j

a c! . If 
j
a i!  for every =1,...,j n , then 

j
a c!  for every =1,...,j n . 

 b) for = 2n  the converse of a) is true. 

 c) for > 2n  the converse of a) is not true. 

      4. under the same hypothesis as in 3. a) hypothesis for the elements ; = 1,..., , 2ja S j n n! "  we 

have 
=1

=

n

j

j

a i!  if and only if =
j
a i  for every =1,...,j n .  

5. let that the elements : = 1,...,ja S j n!  are pairwise i -prime with 
=1

=

n

j

j

a a!  and that there 

exist elements ; = 1,...,b S m! !"  pairwise commutative and i -prime with 
=1

= (1 )
m

b a n! µ

!

µ" "# . 

Then the elements 
1 1 1 1
,..., , ,..., , ,...,

m n
a a b b a aµ µ! +  are also pairwise i -prime and 

1

=1 =1 = 1

=

m n

j j

j j

a b a a
µ

!
! µ

"

+

# $ # $# $
% & % &% &

' (' ( ' (
) ) )  

Proof.   1. Let ,
i

a b c i! "  and ac b! , then  

= ( ) = =c a b c ac bc b b b! ! " ! . 

2. Indeed: = (( ) ) = =a c a a b c a ac bc a bc! ! ! ! ! !  (since ac a! ). 

3. a) The elements , = 1,..., , 2
j
a j n n !  are pairwise commutative and i -prime. Therefore:  

 
1 2 1 2

... = ...
n n

a a a a a a! ! !   

If we suppose now that there exists t  (1 t n! ! ) with =
t
a c , then 

1 2
= ...

t n
a a a a! ! ! . 

Therefore, 
j t
a a!  for every =1,...,j n  with j t! . But for every =1,...,j n  with j t! , 

j i t
a a! , 

thus =
j
a i  for every =1,...,j n  with j t!  (Proposition 2.4). This is impossible. 

b) It is obvious. 
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c) Let , = 1,..., , > 2ja S j n n! , where 
1 2

,a i a i! !  and 
3
= ... = =

n
a a i . By one side, since 3. a) 

is true, we have 
1 2

... =
n

a a a c! ! !  and therefore, 
1

c a! . But 
1
<a i  (since 

1 i j
a a!  for every 1j !  

and 
1
a i! ), thus c i! , that is, 

3
,...,

n
c a c a! ! . By the other side, 

1 2
=c a a , where 

1
a i!  and 

2
a i! . This and 3. a) imply 

1
a c!  and 

2
a c! . Therefore, 

1
,...,

n
c a c a! !  and this completes the 

proof of the property. 

4. Let 
=1

=

n

j

j

a i! . Then 
1 2 1 2

... = ... =
n n

a a a a a a i! ! ! . Therefore, 
j

i a!  for all =1,...,j n . Since 

, = 1,...,
j
a j n  are pairwise i -prime, we have 

j
a i! , for all =1,...,j n . Therefore, =

j
a i  for all 

=1,...,j n . The converse is obvious. 

5. The elements , = 1,...,b S m! !"  are pairwise commutative and i -prime. Therefore, 

=1 =1

= =

mm

b b a! ! µ
! !

"# . Thus we have ,
j i j j
a a a aµ! "  and 

1
,...,

m
a b bµ !  for all =1,...,j n  with j n! . 

Therefore, by Proposition 2.4, we have 
1
,...,j i ma b b!  for all =1,...,j n  with j µ!  which implies the 

property. 
 

Remark 1. (a) The property 4. of the above theorem implies that 3. makes sense only for c i! . 

(b) The property 1. remains true in case S  is a e! -semigroup. 
 

3. ALGEBRA OF POLAR SUBSETS OF A LE-SEMIGROUP 

Let S  be a le -semigroup, 
0
x S!  and A ! "  a subset of S . Then the following set defined by  

 
0 0
={ : , }

x x
A x S x a a A
!

" ! # "   

is called 
0
x

! -polar of A . If 
0
x
A
!
"# , then the set 

0 0
( )

x x
A
! !

 is called 
0
x

! -bipolar of A  and we 

denote it 
0
x
A
! !

. 

Remark 1. The 
0
x

! -polar and 
0
x

! -bipolar of A  are different in general. 

 Proposition 3.1. Let S  be a le-semigroup, 
0
x S!  and A ! "  a subset of S . Then 

0
x
A
!
"#  if and only if 

0
x  is the greatest element of 

0
x
A
!

. If 
0
x
A
!
"# , then 

a) 
0
x a!  for every a A!  and b) 

0
x x!  for every 

0
x

x A
!

" . 

But a) implies 
0 0

=x a x!  for every a A! , that is, 
0

0
x

x A
!

" . Therefore, 
0
x  is the greatest 

element of 
0
x
A
!

. The converse is obvious. 

 Proposition 3.2. Let S  be a le-semigroup and 
0
x S! . The following statements are equivalent   

1. 
0
=x e .  

2. for every ! " #A P
0

0
( ), !

"
x

S x A , where ( )SP denotes the set of all subsets of S. 

3. for every ! " #A P
0

( ), !
"#

x
S A .  

Proof. 1. 2.!  Indeed: if 
0
=x e , then 

0
0
x

x a! , for all a A!  and for all ! " #A P (S). This implies 

the 2. 

2. 3.!  It is obvious. 
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3. 1.!  Indeed: if 3. is true, then 
0

{ }
x

a
!
"#  for all a S! . Therefore, 

0
0

{ }
x

x a
!

"  for all a S!  

(Proposition 3.1). Thus 
0
x a!  for all a S! , that is, 

0
=x e . 

Let S  be a le-semigroup. If A S! , the polar of A , denoted by 
*
A , is the set defined by  

 
* ={ : = , } =

e
A x S x a e a A A

!
" # $ "   

The set 
**
A  is called the bipolar of A . 

  

 Proposition 3.3. Let S  be a le-semigroup and ,A B S! " # . Then the following hold true:   

     1. if A B! , then 
* *
A B! .  

     2.
**

A A! .  

     3. 
* ***
=A A .  

     4. 
* ** ={ }A A e! .  

Proof. 1. It is obvious. 

2. If a A!  and 
*

x A! , then =a x e! . Therefore 
**

a A! . 

3. By 2., we have 
* ***
A A! . By 1., since 

**
A A! , we obtain 

* ***
A A! . 

4. We have 
* ** { }A A e! " . In fact: if 

* **
y A A! " , then =y a e! , for all 

*
a A! , but then 

=y y e! , thus =y e . By Proposition 3.2, we obtain 
* **

e A A! " . 

An immediate corollary of Proposition 3.2 and 3.3 is the following proposition: 

Corollary 3.4. Let S  be a le-semigroup and 
0
x S! . 

0
x  is the greatest element (= e ) of S  if and only if for 

every A S! " # , 0
0 0

={ }
x x
A A x

! !!
" . In following, for a le-semigroup S  and 

0
x S!  we will 

denote 
0 0
={ : }A

! !
" # $

x x
A A S  and 

**={ : = }B !A S A A . 

  

Corollary 3.5. Let S  be a le-semigroup. Then =B A
!

e
.   

Proof. If 
*
A

!
"

e
A , then 

* ***
=A A  (Proposition 3.3(3.)). Therefore 

*
B!A . Conversely, if B!A , 

then 
**

=A A . Therefore A
!

"
e

A . 

Corollary 3.6. Let S  be a le-semigroup and A S! " # . Then the bipolar 
**
A  of A  is the smallest element 

of B  containing A .   

Proof. Corollary 3.5 implies that 
**
A  is an element of B . Proposition 3.3(2.) implies that B!A . Let 

assume that there exists B!"A , where 
**

A A A!" " . Then, Proposition 3.3(1., 3.) implies that 
* * *** *( ) =A A A A!" " . Therefore 

* *( ) =A A! . Since B!"A , then we have 
**

=A A! . 

Proposition 3.7. Let S  be a le-semigroup and ,B! !
i
A i I . Then B

!

!! i

i I

A .   

Proof. For all the families { : }
i
A i I!  of subsets of S  we have 

*

*= ( ) ... ( )
! !

" #
$ %
& '
! "i i

i I i I

A A A   

Indeed: let 

*

i

i I

x A

!

" #
!$ %
& '
! . This is equivalent with = , ,

i
x a e a A i I! " # " # . That is, 

*( ) ,
i

x A i I! " ! . So, 
*( )

i

i I

x A

!

!! . By (A), we have: 

( )
*

*
* *

***

*

** **

**

= ( ) = ( )

= ( ) ( 3.3(3.)

= ( ) = .

i i i

i I i I i I

i

i I

i i

i I i I

A A A

A Proposition

A A

! ! !

!

! !

" #
$ %
& '

" #
$ %
& '

" # " #
$ % $ %
& ' & '

! ! !

"

! !
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 Corollary 3.8. Let S  be a le-semigroup and { : }
i
A i I!  a family of subsets of S . Then:   

     1. 

* *

**= ( )
i i

i I i I

A A

! !

" # " #
$ % $ %
& ' & '
! ! .  

     2. if, furthermore B!
i
A  for all i I! , then 

* **

*= ( )
i i

i I i I

A A

! !

" # " #
$ % $ %
& ' & '
! " .  

Proof.   (1).  
*

** ***

*

*

( ) = ( ) (Proposition 3.7(A))

= ( ) (Proposition 3.3(3.)

= (Proposition 3.7(A)).

i i

i I i I

i

i I

i

i I

A A

A

A

! !

!

!

" #
$ %
& '

" #
$ %
& '

! "

"

!

 

(2). In fact, 

*

** *= ( ) = ( ) (Proposition 3.7(A))
! ! !

" #
$ %
& '

! ! "i i i

i I i I i I

A A A . Therefore 

* **

*= ( )
i i

i I i I

A A

! !

" # " #
$ % $ %
& ' & '
! " . 

  

Definition 3.9. A nonempty subset A  of an ordered semigroup S  will be called semi-filter in S  if and only if 

z A!  and x S!  with x z! , implies x A! .   

Proposition 3.10. Let S  be a le-semigroup. Then every B!A  is a semi-filter in S .   

Proof. If ,B! !A a A  and b S!  with b a! , then =b x a x e! " !  for every 
*

x A! . Since e  is 

the greatest element of S , then =b x e!  for every 
*

x A! , that is, 
**
=b A A! . 

Proposition 3.11. Let S  be a le-semigroup and 
1 2
,A A  are semi-filter in S . Then:  

 
** ** **

1 2 1 2( ) = ( ) ( )A A A A! ! .  

Proof.  From Proposition 3.3(3.), it follows:  

 
** ** **

1 2 1 2( ) ( ) ( )A A A A! " ! .  

Now it is enough to prove that: 
** **

1 2( ) ( )x A A! "  and 
*

1 2( )y A A! "  imply =x y e! . 

From Proposition 3.2 and Proposition 3.10, it follows that 
** **

1 2( ) , ( )A A  and 
*

1 2( )A A!  are semi-

filter in S . We have the following:  
** ** ** **

1 2 1 2

* *

1 2 1 2

( ) ( ) , that is, ( ) ( ) ,

( ) , that is, ( ) ,

! " # $ ! # $

! " # $ ! # $

x y x A A x y A A

x y y A A x y A A
 

then 
** ** *

1 2 1 2( ) ( ) ( )x y A A A A! " # # #  . . . (1). 

Let now 
1

u A!  and 
2

v A! . Since , = 1,2
i
A i  are semi-filter in S  and ,u v u v! " , it follows 

that:  
1 2

u v A A! " # , then 
**

1 2( )u v A A! " #  (Proposition 3.3(2.) . . . (2).  

From (1) and (2), we have =x y u v e! ! !  (Proposition 3.3(4.), that is, 
*

2( )x y u A! ! " . Also,  

 
**

2( )x y u x y A! ! " ! # , that is, 
**

2( )x y u A! ! " .  

From Proposition 3.3(4.), we have =x y u e! ! . Also, 
*

1( )x y A! "  and 
**

1( )x y A! " . Then 

=x y e!  (Proposition 3.3(4.). 

Theorem 3.12. Let S  be a le -semigroup. Then the set B  partially ordered by set inclusion is a complete 

Boolean algebra.   
Proof. It is clear that the set B , partially ordered by set inclusion, is a partially ordered semigroup. Let 
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now ,B! !
i
A i I . From Proposition 3.7, it follows that B

!

!! i

i I

A , then =
i i

i I i I

A A

! !

" !  (since if B!S  

with ,
i

S A i I! " # , then 
i

i I

S A

!

"! ). Also, from Proposition 3.3, it follows that 

**

=
i i

i I i I

A A

! !

" #
$ %
& '

( ! . 

Therefore, B  is a complete lattice. 

From Proposition 3.3(2.), it follows that B!S , that is, S  is the greatest element of B . Since 

(1) e A!  for every B!A  and 
(2) B!e , 

then { }e  is the least element of B . Indeed: by one side, 
*

e S!  (Proposition 3.2). By the other side, if 

*
e S! , then =x y e!  for all y S! . It follows that for =y x  we have =x e . Therefore 

* ={ }S e . 

From this and Proposition 3.2, it follows that { } B!e . (1) can be taken as an immediate consequence 

of Proposition 3.2. 

The le -semigroup B  is complemented as lattice. Indeed: if B!A , then 
*
A  is an element of B  

(Proposition 3.2), such that:  
* * ** *

* * ** * ** *

*

*

= = = { }(Proposition3.3(4.) and

= ( ) = ( ) (Proposition 3.7(A))

= { } = (since  is the greatest element of ,

we have for all , { } ).

A A A A A A e

A A A A A A

e S e S

x S x e

! !

" !

# #

$

%  

It remains to show that the le -semigroup B  is distributive. Indeed: let 
1 2 3
, , B!A A A , then  

( )

** ** **

1 2 3 1 2 3 1 2 3

**

1 2 3

**

1 2 1 3 1 2 1 3

( ) = ( ) = ( ) ( )

= ( ( ) (by Proposition 3.10 and 3.11)

= ( ) ( ) = ( ) ( ).

! ! ! "

! "

! " ! # $ #

$ $A A A A A A A A A

A A A

A A A A A A A A

 

 

Next, consider the case where S  is a distributive le -semigroup.   

Proposition 3.13. Let S  a le -semigroup and i  the identity element of S . Then every element of A
!

i
 is a 

convex le -subsemigroup of S .   

Proof. Let 
1 2

, ,A
! ! !
" "

i i i
A x x A  and a A! , then 

1 i
x a!  and 

2 i
x a! . But then 

1 2 1 2
,

i i
x x a x x a! " !  

and 
1 2 i
x x a! " . Therefore, 

1 2
,

i
x x A

!
"  implies 

1 2 1 2 1 2
, ,

i
x x x x x x A

!
" # $ . Thus 

i
A
!

 is a le -

subsemigroup of S . It remains to show that 
i
A
!

 is convex. In fact, if 
1 2
,

i
x x A

!
"  and y S!  with 

1 2
x y x! ! , then for all a A! , 

1 2
= =i x a y a x a i! " ! " ! . Thus for all a A! , =y a i! . 

Therefore iy A
!

" . 

Remark 2. For every le -semigroup S  and 
0
x S! , every element of 

0

A
!
x

 is in general convex. 

The following theorem is an immediately corollary of Proposition 3.13, Theorem 3.12 and 
Corollary 3.5.   

Theorem 3.14. Let S  be a distributive le -semigroup with e  as identity element. Then the set B  partially 

ordered by set inclusion is a complete Boolean algebra and every element of the algebra B  is a convex le -

subsemigroup of S .   

 
4. THE EMBEDDING OF S  IN B  

Let S  be a distributive le -semigroup. For ,a b S! , we put a b!  if and only if 
* *
=a b . It is 

clear that !  is an equivalence relation in S . Let S  be the set of corresponding equivalence classes 

and a
!

 the class containing a . 
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 Proposition 4.1. Let S  be a distributive le -semigroup. Then S  is also a distributive le -semigroup.   
Proof. We define in S  an order relation as follows:  

 a b
! !
"  if and only if 

* *
a b! .  

It can be easily seen that this definition is independent from the representative elements ,a b  of 

,a b
! !

. The mapping S
!

" # $S a a  is isotone. Indeed: if , ,a b S a b! "  and 
*

x a! , then 

=e x a x b! " ! . Therefore =e x b! , that is, 
*

x b! . This implies that ( ) ,a b a b
! ! !

" #  and 

( ) ,a b a b
! ! !

! " . If S
!
"c  with ,c a b

! ! !
"  and 

*( )x a b! " , then ( ) =x a b e! ! . This implies 

* *
b x a c! " # , so ( ) =b x c e! ! . But then 

* *
c x b c! " # . Therefore =c x e! , that is, 

*
x c!  

and if S
!
"c  with ,c a b

! ! !
"  and 

*
x c! , then, since 

* *
x a b! " , we have 

( ) = ( ) ( ) =x a b x a x b e! " ! " ! . So, 
*( )x a b! " . Thus, S  is a le -semigroup with 

( ) =a b a b
! ! !

" "  and ( ) =a b a b
! ! !

! ! . Also, S  is distributive. Indeed:  

( ) = ( ) = ( ( ))

= (( ) ( )) = ( ) ( )

= ( ) ( ).

a b c a b c a b c

a b a c a b a c

a b a c

! ! ! ! ! !

! ! !

! ! ! !

! " ! " ! "

! " ! ! " !

! " !

 

Proposition 4.2. Let S  be a distributive le -semigroup. Then the following hold in B :   

1. 
* * *( ) =a b a b! ! .  

2. 
** ** **( ) =a b a b! " .  

3. 
** ** **( ) =a b a b! " .  

4. 
* * *( ) =a b a b! ! .  

Proof.  1. We have :  
*( ) ( ) = ( ) ( ) =x a b x a b x a x b e e x a! " # $ " $ " $ # % $  and 

* *
= =e x b e x a x b x a b! " # " " # $ % . 

2. We have 
* * * * *( ) = = ({ } { }) = { , }a b a b a b a b! " # . But 

** **{ , }a b a b! " . So, 

* ** ** *{ , } ( )a b a b! " . By the other side, if 
*{ , }x a b! , then ,

e
x a b! . So, 

* ***
=x a a!  and 

* ***
=x b b! , then for every 

** **y a b! " , 
e

x y! . Therefore 
** ** *( )x a b! " . Hence we have  

** ** ** **

** **

( ) = ( )

= .

! "

#

a b a b

a b

 

3. By the Proposition 3.3(2.), 3.10 and Corollary 3.5, we have 
**

a b a a! " # , so 
**

a b a! " . In 

similar, we have 
**

a b b b! " # , so 
**

a b b! " . Then 
** **

B! " # "a b a b , thus 
** ** ** ** ** **( ) ( ) =a b a b a b! " # # . 

Let 
** **

x a b! "  and 
*( )y a b! " , then =y a b e! ! . Thus =x y a b e! ! ! . Therefore 

*x y a b! ! " . But 
**x y a x b! ! " # , so 

**x y a b! ! " . Also, =x y a e! !  and so 
*

x y a! " . 

But 
**

x y x a! " #  and so 
**

x y a! " . Therefore =x y e! , that is, 
e

x y! . 

4. We have  

  

* *** ** ** *

* * ** * *

( ) = ( ) = ( ) ( (3))

= ( ) = .

! ! "

# !

a b a b a b by

a b a b
 

Corollary 4.3. Let S  be a distributive le -semigroup. Then every element of S  is a convex le -subsemigroup 

of S .   

Proof. Let , ,S
! !
" "a b c a  and x S!  with b x c! ! . Then 

* * * * *
= =a b x c a! ! . Therefore 

* *
=x a , that is, x a

!
" . Thus a

!
 is a convex set. More, a

!
 is a le -subsemigroup of S . Indeed: let 

,b c a
!

" . Then 
* * *
= =b a c . By Proposition 4.2(1.,4.), we have 

* * * *( ) = =b c a a a! !  and 
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* * * * **( ) = = ( )b c a a a! ! . Therefore, b c a
!

! "  and b c a
!

" # .  

 

It is clear that a b
! !
"  implies 

* *
a b!  (since 

* *
=a b , then a b! ). Then by Proposition 4.2 (1., 

4.), it follows that the mapping 
*

S B
!

" # $a a  is an isomorphism. 
 

5. ALGEBRA OF POLAR SUBSETS OF A POE-SEMIGROUP 

Let S  be a poe -semigroup, 
0
x S!  and A ! "  a subset of S . Then the following set defined by  

 
0 0
={ : , }

x x
A x S x a a A
!

" ! # "   

is called 
0
x
! -polar of A . If 

0
x
A
!
" # , then the set 

0 0
( )

x x
A
! !

 is called 
0
x
! -bipolar of A  and we denote it 

0
x
A
! !

. 

Let we denote { }0 0

= : =B
! !!

"
x x

A S A A . 

The following proposition can be proved in similar way with Proposition 3.3. 
  

  Proposition 5.1. Let S  be a poe -semigroup, 
0
x S!  and ,A B S! . The following hold true:   

1. if A B! , then 
0 0
x x
A B
! !
" .  

2. 
0
x

A A
! !

" .  

3. 
0 0

=
x x
A A

! ! !!
.  

4. 
0

0 0
{ }

x x
A A x

! !!
" # .  

Proposition 5.2. Let S  be a poe -semigroup, 
0
x S!  and A S! . Then 

0
0 0

={ }
x x
A A x

! !!
"  if and only 

if 
0
=x e .   

Proof. Let 0
0 0

={ }
x x
A A x

! !!
" , then 

0
0
x

x A
! !

" . Therefore, for all 
0
x

a A
!

" , 
0

0
x

x a! . Thus 
0 0

0
x

x x! , 

so 
0
=x e . Now, if 

0
=x e , then for all A S! , 

0
0
x

x A
!

" , therefore, the converse is true. 

Proposition 5.3. Let S  be a poe -semigroup, 
0
x S!  and A S! . Then 

0
x
A
!

 is semi-filter in S .   

Proof. Let 
0
x

z A
!

"  and x S!  with x z! . If a A!  and ,b x a! , then, since ,b z a! , where a A!  

and 
0
x

z A
!

" , it follows that 
0

=b x , so 
0
x

x A
!

" . 

Proposition 5.4. Let S  be a poe -semigroup, 
0
x S!  and , = 1,2

i
A i  semi-filter in S . Then  

 
1 2 1 2

0 0 0
( ) = ( ) ( )

x x x
A A A A

! ! ! ! ! !
" " .  

Proof. Proposition 5.1 implies  

 
1 2 1 2

0 0 0
( ) ( ) ( )

x x x
A A A A

! ! ! ! ! !
" # " .  

Let now 
1 2 1 2

0 0 0
( ) ( ) , ( )x x xx A A y A A

! ! ! ! !
" # " #  and a S!  with ,a x y! . We have to show 

that 
0

=a x . First, we have 
1 2 1 2

0 0 0
( ) ( ) ( )

x x x
a A A A A

! ! ! ! !
" # # #  (by Proposition 5.3). Let now 
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1 2
,u A v A! ! . If ,z t S!  with ,z a u!  and ,t z v! , then, since 

1 2
0

( )
x

a A A
!

" # , it follows that 

1 2
0

( )
x

t A A
!

" #  (by Proposition 5.3). But, t z u! ! , so 
1

t A!  and t u! , so 
2

t A! . Then 

1 2 1 2
0

( )
x

t A A A A
! !

" # $ # . Therefore 
0

=t x . 

Thus, we showed that for all 
2

v A! , 
0
x

z v! , that is, 
2

0
( )

x
z A

!
" . By the other side, 

2
0

( )
x

a A
! !

" , 

so 2
0

( )
x

z A! " " . Thus 
0

=z x . Therefore, we have for all 
1

u A! , 
0
x

a u! , that is, 
1

0
( )

x
a A

!
" . But 

2
0

( )
x

a A
! !

" , thus 
0

=a x . 

 The following proposition can be proved in similar way as in Proposition 3.3 and 3.7. 

Proposition 5.5. Let S  be a poe -semigroup and 
0
x S! . Then   

1. if A S! , then 
0
x
A
! !

 is the least element in 
0

B
!
x

 containing A .  

2. if 
0
( )B

!
" "
i x
A i I , then 

0

B

!

"
!! i x

i I

A .  

Proposition 5.6. Let S  be a poe -semigroup. Then every 
0

B
!

"
x

A  is a semi-filter in S .   

Proof. Let 
0
, ,B

!
" " "

x
A a A b S  with 

0
,

x
b a z A

!
" #  and t S!  with ,t b z! . Then, since ,t a z! , 

where a A!  and 
0
x

z A
!

" , it follows that 
0

=t x . Thus, for all 
0 0
,

x x
z A b z

!
" ! . Therefore, 

0

=
x

b A A
! !

"  and this completes the proof. 

In similar way as in the proof of Theorem 3.12 it can be proved the following theorem. 

Theorem 6 Let S  be a poe -semigroup. Then 
0

B
!
x

 partially ordered by set inclusion is a complete Boolean 

algebra. 
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