ALGEBRA OF POLAR SUBSETS OF AN ORDERED SEMIGROUP

Kostaq HILA

Department of Mathematics & Computer Sciences, Faculty of Natural Sciences, University of Gjirokastra, ALBANIA E-mail: kostag_hila@yahoo.com

Abstract

The algebra of polar subsets of a le- and *poe*-semigroup is considered. It is considered the set \mathcal{B} of the subsets A of S which are equal to the bipolar of A. It is proved that \mathcal{B} , partially ordered by set inclusion is a complete Boolean algebra.

Key words: poe-semigroup, le-semigroup, polar, bipolar, boolean algebra.

Përmbledhje

Në këtë punim është shqyrtuar algjebra e nënbashkësive polare të një *le*- dhe *poe*-gjysmëgrupi. Shqyrtohet bashkësia \mathcal{B} e nënbashkësive A të S të cilat janë të barabarta me bipolarin e A. Provohet që \mathcal{B} , pjesërisht e renditur nga përfshirja e bashkësive, është një algjebër e plotë e Bulit.

1. Introduction and preliminaries

The ordered semigroups (:po-semigroups) and l-semigroups have been studied by a lot of mathematicians. The concept of *l*-semigroup is due to Fuchs [4] and G. Birkhoff [2]. Birkhoff arose a problem (prob.123, pp. 346) concerning the study of a special class of *l*-grupoids. This problem has been studied by different mathematicians for *m*-distributive lattices such as Choudhury [3] and Kehayopulu [4]. A part of those results have been extended and generalized recently in ve-T-semigroups [5]. In this paper we are dealing with *poe-* and *le-*semigroups. Motivation for this paper has been provided by several results obtained in [1, 6, 7, 8, 9]. We study the algebra of polar subsets of a le-semigroup and poe-semigroup. The results of this paper can serve as an object of a further study, in extending and generalizing them in ordered Γ -semigroups, which are widely studied recently by the author and other authors in several papers. Firstly, we introduce the concept of α_{x_0} -disjoint (resp. x_0 -prime) elements of a *poe*semigroup (resp. le-semigroup) and some related properties are investigated. In section 3 we introduce the concept of polar and bipolar of a subset A of a le-semigroup S and investigate different properties concluding with the main theorem in which we show that the set \mathcal{B} of the subsets A of S which are equal to the bipolar of A, partially ordered by set inclusion, is a complete Boolean algebra. In section 4 we put an equivalence relation \approx in a distributive *le*-semigroup and we prove that the set of corresponding equivalence classes S is a distributive *le*-semigroup and there exists an isomorphism between S and B. In the last section, we study, investigate and generalize the same properties in poe-semigroups.

An ordered semigroup (: *po*-semigroup) is an ordered set (S, \leq) at the same time a semigroup such that for all $a, b, x \in S$, $a \leq b \Rightarrow xa \leq xb$ and $ax \leq bx$.

A poe-semigroup is a po-semigroup having a greatest element e.

A *le-semigroup* $(S; \cdot, \vee, \wedge)$ is an algebra defined as follows:

- 1. $\langle S; \cdot \rangle$ is a semigroup;
- 2. $\langle S; \vee; \wedge \rangle$ is a lattice with a greatest element which is denoted by *e* throughout this paper;

3. for all $a, b, c \in S$, $a(b \lor c) = ab \lor ac$ and $(b \lor c)a = ba \lor ca$.

When *S* is a semilattice under \lor with a greatest element *e*, it is called $\lor e$ -semigroup.

2. x_0 -prime elements of *le* -semigroups

Let *S* be a *poe*-semigroup and $x_0 \in S$. We shall say that the elements $a, b \in S$ are α -disjoint with respect to x_0 (or α_{x_0} -disjoint) denoted by $aT_{x_0}b$, if and only if for every element $x \in S$ with $x \ge a$ and $x \ge b$, implies $x = x_0$ [7].

Let S be a *le*-semigroup and $x_0 \in S$. We shall say that the elements $a, b \in S$ are prime with respect to x_0 (or $x_0 - prime$) denoted by $a \prod_{x_0} b$, if $a \lor b = x_0$ [7].

The elements $a_{\alpha}, \alpha \in A$ of a *poe*-semigroup (resp. *le*-semigroup) *S* will be called pairwise α_{x_0} -disjoint (resp. pairwise x_0 -prime) if and only if $a_i T_{x_0} a_j$ (resp. $a_i \Pi_{x_0} a_j$) for every $i, j \in A$ with $i \neq j$ [7].

The following proposition holds true.

Proposition 2.1. Let S be a le-semigroup, $x_0 \in S$ and $a, b \in S$. The following statements are equivalent:

1. $aT_{x_0}b$.

2.
$$a\Pi_{x_0}b$$
 and $x_0 = e$.

Proof. $1 \Rightarrow 2$. Let $aT_{x_0}b$. It is clear that this implies $a\Pi_{x_0}b$. Let now $aT_{x_0}b$ and $y \in S$, then, since $a\Pi_{x_0}b$, we have $x_0 \ge a, b$. If $z = y \lor x_0$, then $z \ge a, b$. Therefore $z = x_0$. Thus we obtain $x_0 \ge y$, that is, $x_0 = e$.

2. ⇒ 1. Let $x \in S$, $x \ge a, b$. Then, since 2. is true, we have $x \ge a \lor b = x_0$ and $x \le x_0$. Therefore $x = x_0$. This completes the proof.

The following proposition is an immediately corollary of the above proposition.

Corollary 2.2. Let *S* be a le-semigroup and $x_0 \in S$. If there exist the elements $a, b \in S$ such that $aT_{x_0}b$, then for every $x, y \in S$, $xT_{x_0}y$ if and only if $x\Pi_{x_0}y$.

Proposition 2.3. Let *S* be a poe-semigroup and $x_0 \in S$. The following properties hold true:

- 1. if $aT_{x_0}b$, then $bT_{x_0}a$.
- 2. if $aT_{x_0}b$ and $a \le b$, then $b = x_0$.
- 3. if $aT_{x_0}b, a \le a'$ and $b \le b'$, then $a'T_{x_0}b'$.
- 4. if the elements $a_i \in S, i \in I$ are pairwise α_{x_0} -disjoint and if for the elements $b_i \in S, i \in I, a_i \leq b_i$, for all $i \in I$, then the elements $b_i, i \in I$ are pairwise α_{x_0} -disjoint.
- 5. $x_0 = e$ if and only if $a T_{x_0} x_0$ for all $a \in S$.

Proof. The properties 1., 2. and 3. are obvious.

4. We have that $a_i T_{x_0} a_j$, $a_i \le b_i$ and $a_j \le b_j$, for every $i, j \in I$ with $i \ne j$. Therefore, because of 3., we obtain $b_i T_{x_0} b_j$, for every $i, j \in I$ with $i \neq j$.

5. Let $x_0 = e$ and $a \in S$. Let $y \in S$ such that $y \ge a, x_0$. Then it is clear that $y = x_0$ and therefore, $aT_{x_0}x_0$. Conversely, if $aT_{x_0}x_0$ for every $a \in S$, then $x_0T_{x_0}x_0$. Thus for all $y \in S$, $y \ge x_0$ implies $y = x_0$, that is, $x_0 = e$.

It is obvious the following proposition.

Proposition 2.4. Let *S* be a *le*-semigroup. The following properties hold true:

- 1. if $a\Pi_{x_0}b$, then $b\Pi_{x_0}a$.
- 2. if $a \prod_{x_0} b$ and $a \le b$, then $b = x_0$.
- 3. $x_0 = e$ if and only if $a \prod_{x_0} x_0$ for all $a \in S$.

Theorem 2.5. If S is a $\lor e$ -semigroup with a unit i, then

1. if $a \prod_i b, c \ge i$ and $ac \ge b$ (or $ca \ge b$), then $c \ge b$.

2. if $a\prod_i b$ and $c \le i$, then $a \lor bc = a \lor c$ (and $a \lor cb = a \lor c$).

If moreover, *S* is a *le*-semigroup, then the following properties hold true:

3. a) suppose that the elements $a_i \in S$; $j = 1, ..., n, n \ge 2$ are pairwise commutative and *i*-prime

with $\prod_{j=1}^{n} a_j = c$. If $a_j \neq i$ for every j = 1, ..., n, then $a_j \neq c$ for every j = 1, ..., n.

b) for n = 2 the converse of a) is true.

c) for n > 2 the converse of a) is not true.

4. under the same hypothesis as in 3. a) hypothesis for the elements $a_j \in S$; $j = 1, ..., n, n \ge 2$ we

have $\prod_{j=1}^{n} a_j = i$ if and only if $a_j = i$ for every j = 1, ..., n.

5. let that the elements $a_j \in S$: j = 1, ..., n are pairwise *i*-prime with $\prod_{j=1}^{n} a_j = a$ and that there

exist elements $b_{\lambda} \in S; \lambda = 1, ..., m$ pairwise commutative and *i*-prime with $\prod_{\mu=1}^{m} b_{\lambda} = a_{\mu}(1 \le \mu \le n)$.

Then the elements $a_1, ..., a_{u-1}, b_1, ..., b_m, a_{u+1}, ..., a_n$ are also pairwise *i*-prime and

$$\left(\prod_{j=1}^{\mu-1} a_j\right) \left(\prod_{\lambda=1}^m b_\lambda\right) \left(\prod_{j=\mu+1}^n a_j\right) = a$$

Proof. 1. Let $a\Pi_i b, c \ge i$ and $ac \ge b$, then

 $c = (a \lor b)c = ac \lor bc \ge b \lor b = b$.

2. Indeed: $a \lor c = a \lor ((a \lor b)c) = a \lor ac \lor bc = a \lor bc$ (since $ac \le a$).

3. a) The elements $a_i, j = 1, ..., n, n \ge 2$ are pairwise commutative and *i*-prime. Therefore:

$$a_1 \wedge a_2 \wedge \dots \wedge a_n = a_1 a_2 \dots a_n$$

If we suppose now that there exists t $(1 \le t \le n)$ with $a_t = c$, then $a_t = a_1 \land a_2 \land \dots \land a_n$. Therefore, $a_j \ge a_t$ for every j = 1, ..., n with $j \ne t$. But for every j = 1, ..., n with $j \ne t$, $a_j \prod_i a_i$, thus $a_i = i$ for every j = 1, ..., n with $j \neq t$ (Proposition 2.4). This is impossible.

b) It is obvious.

Aktet e Takimit Vjetor, Vëll. II, Nr. 3

c) Let $a_j \in S$, j = 1, ..., n, n > 2, where $a_1 \neq i, a_2 \neq i$ and $a_3 = ... = a_n = i$. By one side, since 3. a) is true, we have $a_1 \wedge a_2 \wedge ... \wedge a_n = c$ and therefore, $c \leq a_1$. But $a_1 \leq i$ (since $a_1 \prod_i a_j$ for every $j \neq 1$ and $a_1 \neq i$), thus $c \neq i$, that is, $c \neq a_3, ..., c \neq a_n$. By the other side, $c = a_1a_2$, where $a_1 \neq i$ and $a_2 \neq i$. This and 3. a) imply $a_1 \neq c$ and $a_2 \neq c$. Therefore, $c \neq a_1, ..., c \neq a_n$ and this completes the proof of the property.

4. Let
$$\prod_{j=1}^{n} a_j = i$$
. Then $a_1 \wedge a_2 \wedge ... \wedge a_n = a_1 a_2 ... a_n = i$. Therefore, $i \le a_j$ for all $j = 1, ..., n$. Since

 $a_j, j = 1, ..., n$ are pairwise *i*-prime, we have $a_j \le i$, for all j = 1, ..., n. Therefore, $a_j = i$ for all j = 1, ..., n. The converse is obvious.

5. The elements $b_{\lambda} \in S, \lambda = 1, ..., m$ are pairwise commutative and *i*-prime. Therefore, $\bigwedge_{\lambda=1}^{m} b_{\lambda} = \prod_{\lambda=1}^{m} b_{\lambda} = a_{\mu}.$ Thus we have $a_{j} \prod_{i} a_{\mu}, a_{j} \le a_{j}$ and $a_{\mu} \le b_{1}, ..., b_{m}$ for all j = 1, ..., n with $j \ne n$. Therefore, by Proposition 2.4, we have $a_{j} \prod_{i} b_{1}, ..., b_{m}$ for all j = 1, ..., n with $j \ne \mu$ which implies the property.

Remark 1. (a) The property 4. of the above theorem implies that 3. makes sense only for $c \neq i$. (b) The property 1. remains true in case *S* is a $\lor e$ -semigroup.

3. ALGEBRA OF POLAR SUBSETS OF A LE-SEMIGROUP

Let *S* be a *le*-semigroup, $x_0 \in S$ and $A \neq \emptyset$ a subset of *S*. Then the following set defined by

$$A_{x_0}^{\Pi} = \{ x \in S : x \prod_{x_0} a, \forall a \in A \}$$

is called Π_{x_0} -polar of A. If $A_{x_0}^{\Pi} \neq \emptyset$, then the set $(A_{x_0}^{\Pi})_{x_0}^{\Pi}$ is called Π_{x_0} -bipolar of A and we denote it $A_{x_0}^{\Pi}$.

Remark 1. The \prod_{x_0} -polar and \prod_{x_0} -bipolar of A are different in general.

Proposition 3.1. Let *S* be a le-semigroup, $x_0 \in S$ and $A \neq \emptyset$ a subset of *S*. Then $A_{x_0}^{\prod} \neq \emptyset$ if and only if x_0 is the greatest element of $A_{x_0}^{\prod}$. If $A_{x_0}^{\prod} \neq \emptyset$, then

a) $x_0 \ge a$ for every $a \in A$ and b) $x_0 \ge x$ for every $x \in A_{x_0}^{\prod}$.

But a) implies $x_0 \vee a = x_0$ for every $a \in A$, that is, $x_0 \in A_{x_0}^{\prod}$. Therefore, x_0 is the greatest element of $A_{x_0}^{\prod}$. The converse is obvious.

Proposition 3.2. Let *S* be a le-semigroup and $x_0 \in S$. The following statements are equivalent

- 1. $x_0 = e$.
- 2. for every $\emptyset \neq A \in \mathcal{P}(S), x_0 \in A_{x_0}^{\prod}$, where $\mathcal{P}(S)$ denotes the set of all subsets of *S*.
- 3. for every $\emptyset \neq A \in \mathcal{P}(S), A_{Y_{1}}^{\prod} \neq \emptyset$.

Proof. $1 \Rightarrow 2$. Indeed: if $x_0 = e$, then $x_0 \prod_{x_0} a$, for all $a \in A$ and for all $\emptyset \neq A \in \mathcal{P}$ (S). This implies the 2.

 $2 \Rightarrow 3$. It is obvious.

3.⇒1. Indeed: if 3. is true, then $\{a\}_{x_0}^{\Pi} \neq \emptyset$ for all $a \in S$. Therefore, $x_0 \in \{a\}_{x_0}^{\Pi}$ for all $a \in S$ (Proposition 3.1). Thus $x_0 \ge a$ for all $a \in S$, that is, $x_0 = e$.

Let *S* be a *le*-semigroup. If $A \subseteq S$, the *polar* of *A*, denoted by A^* , is the set defined by $A^* = \{x \in S : x \lor a = e, \forall a \in A\} = A_1^{\Pi}$

The set A^{**} is called the *bipolar* of A.

Proposition 3.3. Let *S* be a le-semigroup and $\emptyset \neq A, B \subseteq S$. Then the following hold true:

1. if $A \subseteq B$, then $A^* \supseteq B^*$.

2. $A \subseteq A^{**}$.

3. $A^* = A^{***}$

4. $A^* \cap A^{**} = \{e\}$.

Proof. 1. It is obvious.

2. If $a \in A$ and $x \in A^*$, then $a \lor x = e$. Therefore $a \in A^{**}$.

3. By 2., we have $A^* \subseteq A^{***}$. By 1., since $A \subseteq A^{**}$, we obtain $A^* \supseteq A^{***}$.

4. We have $A^* \cap A^{**} \subseteq \{e\}$. In fact: if $y \in A^* \cap A^{**}$, then $y \lor a = e$, for all $a \in A^*$, but then $y \lor y = e$, thus y = e. By Proposition 3.2, we obtain $e \in A^* \cap A^{**}$.

An immediate corollary of Proposition 3.2 and 3.3 is the following proposition:

Corollary 3.4. Let *S* be a le-semigroup and $x_0 \in S$. x_0 is the greatest element (= e) of *S* if and only if for every $\emptyset \neq A \subseteq S$, $A_{x_0}^{\prod} \cap A_{x_0}^{\prod} \prod = \{x_0\}$. In following, for a le-semigroup *S* and $x_0 \in S$ we will denote $\mathcal{A}_{x_0}^{\prod} = \{A_{x_0}^{\prod} : \emptyset \neq A \subseteq S\}$ and $\mathcal{B} = \{A \subseteq S : A = A^{**}\}$.

Corollary 3.5. Let *S* be a le-semigroup. Then $\mathcal{B} = \mathcal{A}_{e}^{\Pi}$.

Proof. If $A^* \in \mathcal{A}_e^{\Pi}$, then $A^* = A^{***}$ (Proposition 3.3(3.)). Therefore $A^* \in \mathcal{B}$. Conversely, if $A \in \mathcal{B}$, then $A = A^{**}$. Therefore $A \in \mathcal{A}_e^{\Pi}$.

Corollary 3.6. Let S be a le-semigroup and $\emptyset \neq A \subseteq S$. Then the bipolar A^{**} of A is the smallest element of \mathcal{B} containing A.

Proof. Corollary 3.5 implies that A^{**} is an element of \mathscr{B} . Proposition 3.3(2.) implies that $A \in \mathscr{B}$. Let assume that there exists $A' \in \mathscr{B}$, where $A \subseteq A' \subseteq A^{**}$. Then, Proposition 3.3(1., 3.) implies that $A^* \supseteq (A')^* \supseteq A^{***} = A^*$. Therefore $(A')^* = A^*$. Since $A' \in \mathscr{B}$, then we have $A' = A^{**}$.

Proposition 3.7. Let *S* be a le-semigroup and $A_i \in \mathcal{B}, i \in I$. Then $\bigcap_{i=1}^{n} A_i \in \mathcal{B}$.

Proof. For all the families $\{A_i : i \in I\}$ of subsets of S we have $\left(\bigcup_{i \in I} A_i\right)^* = \bigcap_{i \in I} (A_i)^* \dots$ (A)

Indeed: let $x \in \left(\bigcup_{i \in I} A_i\right)^*$. This is equivalent with $x \lor a = e, \forall a \in A_i, \forall i \in I$. That is, $x \in (A_i)^*, \forall i \in I$. So, $x \in \bigcap_{i \in I} (A_i)^*$. By (A), we have: $\frac{\bigcap_{i \in I} A_i = \bigcap_{i \in I} (A_i)^*}{= \left(\bigcup_{i \in I} A_i\right)^*} = \left(\bigcap_{i \in I} (A_i)^*\right)^*}$ $= \left(\bigcup_{i \in I} (A_i)^*\right)^{**} = \left(\bigcap_{i \in I} (A_i)^*\right)^{**}$

Aktet e Takimit Vjetor, Vëll. II, Nr. 3

Corollary 3.8. Let *S* be a le-semigroup and $\{A_i : i \in I\}$ a family of subsets of *S*. Then:

$$1. \left(\bigcup_{i \in I} A_i \right) = \left(\bigcup_{i \in I} (A_i)^{**} \right).$$

$$2. \text{ if, furthermore } A_i \in \mathcal{B} \text{ for all } i \in I \text{ , then } \left(\bigcap_{i \in I} A_i \right)^* = \left(\bigcup_{i \in I} (A_i)^* \right)^{**}.$$
Proof. (1).

$$\left(\bigcup_{i \in I} (A_i)^{**}\right)^* = \bigcap_{i \in I} (A_i)^{***} (\text{Proposition 3.7(A)})$$
$$= \bigcap_{i \in I} (A_i)^* (\text{Proposition 3.3(3.)})$$
$$= \left(\bigcup_{i \in I} A_i\right)^* (\text{Proposition 3.7(A)}).$$
(2). In fact, $\bigcap_{i \in I} A_i = \bigcap_{i \in I} (A_i)^{**} = \left(\bigcup_{i \in I} (A_i)^*\right)^* (\text{Proposition 3.7(A)})$. Therefore $\left(\bigcap_{i \in I} A_i\right)^* = \left(\bigcup_{i \in I} (A_i)^*\right)^{**}$

Definition 3.9. A nonempty subset A of an ordered semigroup S will be called semi-filter in S if and only if $z \in A$ and $x \in S$ with $x \ge z$, implies $x \in A$.

Proposition 3.10. Let *S* be a le-semigroup. Then every $A \in \mathcal{B}$ is a semi-filter in *S*. **Proof.** If $A \in \mathcal{B}, a \in A$ and $b \in S$ with $b \ge a$, then $b \lor x \ge a \lor x = e$ for every $x \in A^*$. Since *e* is the greatest element of *S*, then $b \lor x = e$ for every $x \in A^*$, that is, $b \in A^{**} = A$.

Proposition 3.11. Let S be a le-semigroup and A_1, A_2 are semi-filter in S. Then:

$$(A_1 \cap A_2)^{**} = (A_1)^{**} \cap (A_2)^{**}.$$

Proof. From Proposition 3.3(3.), it follows:

 $(A_1 \cap A_2)^{**} \subseteq (A_1)^{**} \cap (A_2)^{**}.$

Now it is enough to prove that: $x \in (A_1)^{**} \cap (A_2)^{**}$ and $y \in (A_1 \cap A_2)^*$ imply $x \lor y = e$.

From Proposition 3.2 and Proposition 3.10, it follows that $(A_1)^{**}, (A_2)^{**}$ and $(A_1 \cap A_2)^*$ are semifilter in *S*. We have the following:

 $x \lor y \ge x \in (A_1)^{**} \cap (A_2)^{**}$, that is, $x \lor y \in (A_1)^{**} \cap (A_2)^{**}$,

 $x \lor y \ge y \in (A_1 \cap A_2)^*$, that is, $x \lor y \in (A_1 \cap A_2)^*$,

then $x \lor y \in (A_1)^{**} \cap (A_2)^{**} \cap (A_1 \cap A_2)^* \dots (1).$

Let now $u \in A_1$ and $v \in A_2$. Since $A_i, i = 1, 2$ are semi-filter in *S* and $u \lor v \ge u, v$, it follows that: $u \lor v \in A_1 \cap A_2$, then $u \lor v \in (A_1 \cap A_2)^{**}$ (Proposition 3.3(2.)...(2).

From (1) and (2), we have $x \lor y \lor u \lor v = e$ (Proposition 3.3(4.), that is, $x \lor y \lor u \in (A_2)^*$. Also, $x \lor y \lor u \ge x \lor y \in (A_2)^{**}$, that is, $x \lor y \lor u \in (A_2)^{**}$.

From Proposition 3.3(4.), we have $x \lor y \lor u = e$. Also, $x \lor y \in (A_1)^*$ and $x \lor y \in (A_1)^{**}$. Then $x \lor y = e$ (Proposition 3.3(4.).

Theorem 3.12. Let S be a le-semigroup. Then the set \mathcal{B} partially ordered by set inclusion is a complete Boolean algebra.

Proof. It is clear that the set \mathcal{B} , partially ordered by set inclusion, is a partially ordered semigroup. Let

now $A_i \in \mathcal{B}, i \in I$. From Proposition 3.7, it follows that $\bigcap_{i \in I} A_i \in \mathcal{B}$, then $\bigwedge_{i \in I} A_i = \bigcap_{i \in I} A_i$ (since if $S \in \mathcal{B}$)

with $S \subseteq A_i, \forall i \in I$, then $S \subseteq \bigcap_{i \in I} A_i$). Also, from Proposition 3.3, it follows that $\bigvee_{i \in I} A_i = \left(\bigcup_{i \in I} A_i\right)^T$. Therefore, \mathcal{B} is a complete lattice.

From Proposition 3.3(2.), it follows that $S \in \mathcal{B}$, that is, S is the greatest element of \mathcal{B} . Since

- (1) $e \in A$ for every $A \in \mathcal{B}$ and
- (2) $e \in \mathcal{B}$,

then $\{e\}$ is the least element of \mathcal{B} . Indeed: by one side, $e \in S^*$ (Proposition 3.2). By the other side, if $e \in S^*$, then $x \lor y = e$ for all $y \in S$. It follows that for y = x we have x = e. Therefore $S^* = \{e\}$. From this and Proposition 3.2, it follows that $\{e\} \in \mathcal{B}$. (1) can be taken as an immediate consequence of Proposition 3.2.

The *le*-semigroup \mathcal{B} is complemented as lattice. Indeed: if $A \in \mathcal{B}$, then A^* is an element of \mathcal{B} (Proposition 3.2), such that:

 $A_{\bigwedge}A^* = A \cap A^* = A^{**} \cap A^* = \{e\} \text{(Proposition 3.3(4.) and}$ $A_{\bigvee}A^* = (A \cup A^*)^{**} = (A^* \cap A^{**})^* \text{(Proposition 3.7(A))}$ $= \{e\}^* = S \text{(since } e \text{ is the greatest element of } S,$ we have for all $x \in S, x \in \{e\}^*$).

It remains to show that the *le*-semigroup \mathcal{B} is distributive. Indeed: let $A_1, A_2, A_3 \in \mathcal{B}$, then

$$A_{1} \bigvee (A_{2} \bigvee A_{3}) = A_{1} \cap (A_{2} \cap A_{3})^{**} = (A_{1})^{**} \cap (A_{2} \cup A_{3})^{*}$$

= $(A_{1} \cap (A_{2} \cup A_{3})^{**}$ (by Proposition 3.10 and 3.11)
= $((A_{1} \cap A_{2}) \cup (A_{1} \cap A_{3}))^{**} = (A_{1} \land A_{2}) \lor (A_{1} \land A_{3}).$

Next, consider the case where S is a distributive le-semigroup.

Proposition 3.13. Let *S* a *le*-semigroup and *i* the identity element of *S*. Then every element of \mathcal{A}_i^{Π} is a convex *le*-subsemigroup of *S*.

Proof. Let $A_i^{\Pi} \in \mathcal{A}_i^{\Pi}, x_1, x_2 \in A_i^{\Pi}$ and $a \in A$, then $x_1 \Pi_i a$ and $x_2 \Pi_i a$. But then $x_1 x_2 \Pi_i a, x_1 \wedge x_2 \Pi_i a$ and $x_1 \vee x_2 \Pi_i a$. Therefore, $x_1, x_2 \in A_i^{\Pi}$ implies $x_1 x_2, x_1 \wedge x_2, x_1 \vee x_2 \in A_i^{\Pi}$. Thus A_i^{Π} is a *le*-subsemigroup of S. It remains to show that A_i^{Π} is convex. In fact, if $x_1, x_2 \in A_i^{\Pi}$ and $y \in S$ with $x_1 \leq y \leq x_2$, then for all $a \in A$, $i = x_1 \vee a \leq y \vee a \leq x_2 \vee a = i$. Thus for all $a \in A$, $y \vee a = i$. Therefore $y \in A_i^{\Pi}$.

Remark 2. For every *le*-semigroup *S* and $x_0 \in S$, every element of $\mathcal{A}_{x_0}^{\prod}$ is in general convex.

The following theorem is an immediately corollary of Proposition 3.13, Theorem 3.12 and Corollary 3.5.

Theorem 3.14. Let S be a distributive le-semigroup with e as identity element. Then the set \mathcal{B} partially ordered by set inclusion is a complete Boolean algebra and every element of the algebra \mathcal{B} is a convex le-subsemigroup of S.

4. The embedding of \mathcal{S} in \mathcal{B}

Let *S* be a distributive *le*-semigroup. For $a, b \in S$, we put $a \approx b$ if and only if $a^* = b^*$. It is clear that \approx is an equivalence relation in *S*. Let *S* be the set of corresponding equivalence classes and a^{\wedge} the class containing *a*.

Aktet e Takimit Vjetor, Vëll. II, Nr. 3 137

Proposition 4.1. Let *S* be a distributive *le*-semigroup. Then *S* is also a distributive *le*-semigroup. *Proof.* We define in *S* an order relation as follows:

 $a^{\wedge} \leq b^{\wedge}$ if and only if $a^{*} \subseteq b^{*}$.

It can be easily seen that this definition is independent from the representative elements a, b of a^{\wedge}, b^{\wedge} . The mapping $S \ni a \to a^{\wedge} \in S$ is isotone. Indeed: if $a, b \in S, a \le b$ and $x \in a^{*}$, then $e = x \lor a \le x \lor b$. Therefore $e = x \lor b$, that is, $x \in b^{*}$. This implies that $(a \lor b)^{\wedge} \ge a^{\wedge}, b^{\wedge}$ and $(a \land b)^{\wedge} \le a^{\wedge}, b^{\wedge}$. If $c^{\wedge} \in S$ with $c^{\wedge} \ge a^{\wedge}, b^{\wedge}$ and $x \in (a \lor b)^{*}$, then $x \lor (a \lor b) = e$. This implies $b \lor x \in a^{*} \subseteq c^{*}$, so $(b \lor x) \lor c = e$. But then $c \lor x \in b^{*} \subseteq c^{*}$. Therefore $c \lor x = e$, that is, $x \in c^{*}$ and if $c^{\wedge} \in S$ with $c^{\wedge} \le a^{\wedge}, b^{\wedge}$ and $x \in c^{*}$, then, since $x \in a^{*} \cap b^{*}$, we have $x \lor (a \land b) = (x \lor a) \land (x \lor b) = e$. So, $x \in (a \land b)^{*}$. Thus, S is a *le*-semigroup with $(a \lor b)^{\wedge} = a^{\wedge} \lor b^{\wedge}$ and $(a \land b)^{\wedge} = a^{\wedge} \land b^{\wedge}$. Also, S is distributive. Indeed:

 $a^{\wedge} \wedge (b^{\wedge} \vee c^{\wedge}) = a^{\wedge} \wedge (b \vee c)^{\wedge} = (a \wedge (b \vee c))^{\wedge}$ $= ((a \wedge b) \vee (a \wedge c))^{\wedge} = (a \wedge b)^{\wedge} \vee (a \wedge c)^{\wedge}$ $= (a^{\wedge} \wedge b^{\wedge}) \vee (a^{\wedge} \wedge c^{\wedge}).$

Proposition 4.2. Let S be a distributive le-semigroup. Then the following hold in \mathcal{B} :

- 1. $(a \land b)^* = a^* \land b^*$.
- 2. $(a \land b)^{**} = a^{**} \lor b^{**}$
- 3. $(a \lor b)^{**} = a^{**} \land b^{**}$.
- 4. $(a \lor b)^* = a^* \lor b^*$.

Proof. 1. We have: $x \in (a \land b)^* \Leftrightarrow x \lor (a \land b) = (x \lor a) \land (x \lor b) = e \Leftrightarrow e \le x \lor a$ and $e \le x \lor b \Leftrightarrow e = x \lor a = x \lor b \Leftrightarrow x \in a^* \land b^*$.

2. We have $(a \land b)^* = a^* \cap b^* = (\{a\} \cup \{b\})^* = \{a, b\}^*$. But $\{a, b\} \subseteq a^{**} \cup b^{**}$. So, $\{a, b\}^* \supseteq (a^{**} \cup b^{**})^*$. By the other side, if $x \in \{a, b\}^*$, then $x \prod_e a, b$. So, $x \in a^* = a^{***}$ and $x \in b^* = b^{***}$, then for every $y \in a^{**} \cup b^{**}$, $x \prod_e y$. Therefore $x \in (a^{**} \cup b^{**})^*$. Hence we have

$$(a \land b)^{**} = (a^{**} \cup b^{**})^{**}$$

= $a^{**} \lor b^{**}$.

3. By the Proposition 3.3(2.), 3.10 and Corollary 3.5, we have $a \lor b \ge a \in a^{**}$, so $a \lor b \in a^{**}$. In similar, we have $a \lor b \ge b \in b^{**}$, so $a \lor b \in b^{**}$. Then $a \lor b \in a^{**} \cap b^{**} \in \mathcal{B}$, thus $(a \lor b)^{**} \subseteq (a^{**} \cap b^{**})^{**} = a^{**} \cap b^{**}$.

Let $x \in a^{**} \cap b^{**}$ and $y \in (a \lor b)^*$, then $y \lor a \lor b = e$. Thus $x \lor y \lor a \lor b = e$. Therefore $x \lor y \lor a \in b^*$. But $x \lor y \lor a \ge x \in b^{**}$, so $x \lor y \lor a \in b^{**}$. Also, $x \lor y \lor a = e$ and so $x \lor y \in a^*$. But $x \lor y \ge x \in a^{**}$ and so $x \lor y \in a^{**}$. Therefore $x \lor y = e$, that is, $x \Pi_e y$.

4. We have

$$(a \lor b)^* = (a \lor b)^{***} = (a^{**} \land b^{**})^* (by(3))$$
$$= (a^* \cup b^*)^{**} = a^* \lor b^*.$$

Corollary 4.3. Let S be a distributive le-semigroup. Then every element of S is a convex le-subsemigroup of S.

Proof. Let $a^{\wedge} \in S, b, c \in a^{\wedge}$ and $x \in S$ with $b \leq x \leq c$. Then $a^* = b^* \subseteq x^* \subseteq c^* = a^*$. Therefore $x^* = a^*$, that is, $x \in a^{\wedge}$. Thus a^{\wedge} is a convex set. More, a^{\wedge} is a *le*-subsemigroup of S. Indeed: let $b, c \in a^{\wedge}$. Then $b^* = a^* = c^*$. By Proposition 4.2(1.4.), we have $(b \wedge c)^* = a^* \wedge a^* = a^*$ and

 $(b \lor c)^* = a^* \lor a^* = (a^*)^{**}$. Therefore, $b \land c \in a^{\land}$ and $b \lor c \in a^{\land}$.

It is clear that $a^{\wedge} \neq b^{\wedge}$ implies $a^* \neq b^*$ (since $a^* = b^*$, then $a \approx b$). Then by Proposition 4.2 (1., 4.), it follows that the mapping $\mathcal{S} \ni a^{\wedge} \to a^* \in \mathcal{B}$ is an isomorphism

5. ALGEBRA OF POLAR SUBSETS OF A POE-SEMIGROUP

Let *S* be a *poe*-semigroup, $x_0 \in S$ and $A \neq \emptyset$ a subset of *S*. Then the following set defined by

$$A_{x_0}^{\mathrm{T}} = \{ x \in S : x \mathrm{T}_{x_0} a, \forall a \in A \}$$

is called T_{x_0} -polar of A. If $A_{x_0}^T \neq \emptyset$, then the set $(A_{x_0}^T)_{x_0}^T$ is called T_{x_0} -bipolar of A and we denote it $A_{r_0}^{T T}$.

Let we denote $\mathcal{B}_{x_0}^{\mathrm{T}} = \left\{ A \subseteq S : A = A_{x_0}^{\mathrm{T}} \right\}$

The following proposition can be proved in similar way with Proposition 3.3.

Proposition 5.1. Let S be a poe-semigroup, $x_0 \in S$ and $A, B \subseteq S$. The following hold true:

1. if
$$A \subseteq B$$
, then $A_{x_0}^{\Gamma} \supseteq B$,
2. $A \subseteq A_{x_0}^{\Gamma} T$.
3. $A_{x_0}^{\Gamma} = A_{x_0}^{\Gamma} T T$.
4. $A_{x_0}^{\Gamma} \cap A_{x_0}^{\Gamma} T \subseteq \{x_0\}$.

Proposition 5.2. Let S be a poe-semigroup, $x_0 \in S$ and $A \subseteq S$. Then $A_{x_0}^{T} \cap A_{x_0}^{T-T} = \{x_0\}$ if and only if $x_0 = e$

Proof. Let $A_{x_n}^{\mathbf{T}} \cap A_{x_n}^{\mathbf{T}} \cap = \{x_0\}$, then $x_0 \in A_{x_0}^{\mathbf{T}} \cap \mathbf{T}$. Therefore, for all $a \in A_{x_0}^{\mathbf{T}}$, $x_0 \mathbf{T}_{x_0} a$. Thus $x_0 \mathbf{T}_{x_0} x_0$, so $x_0 = e$. Now, if $x_0 = e$, then for all $A \subseteq S$, $x_0 \in A_{x_0}^{T}$, therefore, the converse is true.

Proposition 5.3. Let S be a poe-semigroup, $x_0 \in S$ and $A \subseteq S$. Then $A_{x_0}^{T}$ is semi-filter in S.

Proof. Let $z \in A_{x_0}^{T}$ and $x \in S$ with $x \ge z$. If $a \in A$ and $b \ge x, a$, then, since $b \ge z, a$, where $a \in A$ and $z \in A_{x_0}^{\mathrm{T}}$, it follows that $b = x_0$, so $x \in A_{x_0}^{\mathrm{T}}$.

Proposition 5.4. Let S be a poe-semigroup, $x_0 \in S$ and A_i , i = 1, 2 semi-filter in S. Then

$$(A_1 \cap A_2)_{x_0}^{\mathbf{T}} = (A_1)_{x_0}^{\mathbf{T}} \cap (A_2)_{x_0}^{\mathbf{T}}$$

Proof. Proposition 5.1 implies

$$(A_1 \cap A_2)_{x_0}^{\mathsf{T}} \stackrel{\mathsf{T}}{=} (A_1)_{x_0}^{\mathsf{T}} \stackrel{\mathsf{T}}{=} (A_2)_{x_0}^{\mathsf{T}} \stackrel{\mathsf{T}}{=$$

Let now $x \in (A_1)_{x_0}^T \xrightarrow{T} \cap (A_2)_{x_0}^T \xrightarrow{T}, y \in (A_1 \cap A_2)_{x_0}^T$ and $a \in S$ with $a \ge x, y$. We have to show that $a = x_0$. First, we have $a \in (A_1)_{x_0}^T \xrightarrow{T} \cap (A_2)_{x_0}^T \xrightarrow{T} \cap (A_1 \cap A_2)_{x_0}^T$ (by Proposition 5.3). Let now

Aktet e Takimit Vjetor, Vëll. II, Nr. 3

 $u \in A_1, v \in A_2$. If $z, t \in S$ with $z \ge a, u$ and $t \ge z, v$, then, since $a \in (A_1 \cap A_2)_{x_0}^{\mathrm{T}}$, it follows that $t \in (A_1 \cap A_2)_{x_0}^{\mathrm{T}}$ (by Proposition 5.3). But, $t \ge z \ge u$, so $t \in A_1$ and $t \ge u$, so $t \in A_2$. Then $t \in A_1 \cap A_2 \subseteq (A_1 \cap A_2)_{x_0}^{\mathrm{T}}$. Therefore $t = x_0$.

Thus, we showed that for all $v \in A_2$, $zT_{x_0}v$, that is, $z \in (A_2)_{x_0}^{\mathbf{T}}$. By the other side, $a \in (A_2)_{x_0}^{\mathbf{T}}$, so $z \in (A_2)\mathbf{T}$ T_{x₀}. Thus $z = x_0$. Therefore, we have for all $u \in A_1$, $aT_{x_0}u$, that is, $a \in (A_1)_{x_0}^{\mathbf{T}}$. But $a \in (A_2)_{x_0}^{\mathbf{T}}$, thus $a = x_0$.

The following proposition can be proved in similar way as in Proposition 3.3 and 3.7. **Proposition 5.5.** Let *S* be a poe-semigroup and $x_0 \in S$. Then

1. if
$$A \subseteq S$$
, then $A_{x_0}^{\mathbf{T}} \stackrel{\mathbf{T}}{=}$ is the least element in $\mathscr{B}_{x_0}^{\mathbf{T}}$ containing A .
2. if $A_i \in \mathscr{B}_{x_0}^{\mathbf{T}}(i \in I)$, then $\bigcap_{i \in I} A_i \in \mathscr{B}_{x_0}^{\mathbf{T}}$.

Proposition 5.6. Let S be a poe-semigroup. Then every $A \in \mathscr{B}_{x_0}^{T}$ is a semi-filter in S.

Proof. Let $A \in \mathcal{B}_{x_0}^{\mathbf{T}}, a \in A, b \in S$ with $b \ge a, z \in A_{x_0}^{\mathbf{T}}$ and $t \in S$ with $t \ge b, z$. Then, since $t \ge a, z$, where $a \in A$ and $z \in A_{x_0}^{\mathbf{T}}$, it follows that $t = x_0$. Thus, for all $z \in A_{x_0}^{\mathbf{T}}, b\mathbf{T}_{x_0}z$. Therefore, $b \in A_{x_0}^{\mathbf{T}}, \mathbf{T} = A$ and this completes the proof.

In similar way as in the proof of Theorem 3.12 it can be proved the following theorem.

Theorem 6 Let S be a poe-semigroup. Then $\mathcal{B}_{x_0}^{T}$ partially ordered by set inclusion is a complete Boolean algebra.

REFERENCES

- Bernau S.J. (1965) Unique representation of archimedean lattice groups and normal archimedean lattice rings. London Math. Soc. (3) 15, 559-631.
- [2] Birkhoff G. (1967) Lattice Theory, Vol. 25, Amer. Math. Soc. Col. Publ.
- [3] Choudhury A.C. (1957) The doubly distributive m-lattice. Bull. Calcutta Math. Soc. 49, 71-74.
- [4] Fuchs L. (1963) Partially ordered algebraic systems, Pergamon Press.
- [5] Hila K. (2008) On normal elements and normal closure in $\vee e \Gamma$ -semigroups. Algebras, Groups and Geometries, 25, No. 1, 93-108.
- [6] Kappos D.A., Kehayopulu N. (1971) Some remarks on the representation of lattice ordered groups. Mathematica Balkanica 1, 142-143.
- [7] Kehayopulu N. (1971) m-Lattices and the algebra of polar subsets of a lattice. Bull. Soc. Math. Grece 12, No.2, 225-282.
- [8] MacNeille H. (1937) Partially ordered sets. Trans. Amer. Math. Soc. 42, 416-460.
- [9] MacNeille H. (1939) Extension of a distributive lattice to a Boolean ring. Bull. Amer. Math. Soc. 45, 452-455.