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ABSTRACT 
In this paper, we give the generalization of a theorem 

having to do with Lebesgue integration of derivative of 

a function. We demonstrate that correctness of this 

theorem remains by replacing "the derivative" with "the 

right-hand derivative". The main purpose of this paper 

is the new way of studying of the existing relations 

between "the derivative" of a continuous function on 

the one side, and "the right-hand derivative" or "right-

hand derivative numbers" on the other side.    

 
Key words: derivative, right-hand derivative, right-hand 
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PËRMBLEDHJE 
Në këtë artikull jepet përgjithësimi i një teoreme që 

ka të bëjë me integrimin sipas Lebegut të derivatit të 

një funksioni. Kemi provuar se vërtetësia e kësaj 

teoreme ruhet nëse zëvendësojmë në te “derivatin” me 

“derivatin e djathtë”. Qëllimi kryesor i artikullit është 

studimi në një mënyrë të re i lidhjeve që ekzistojnë 

ndërmjet “derivatit” të një funksioni të vazhdueshëm 

nga  njëra anë, dhe “derivtatit të djathtë” apo “numrave 

derivativë të djathtë” të tij nga ana tjetër. 

 

1. INTRODUCTION 
The problems of relations between differentiability 

and one-sided differentiability of a function are well 

known in literature. The purpose of this paper is to 

present an analysis for one of these problems that has 

to do with investigation of relations that exist between 

the derivative of a continuous function and the right-

hand derivative or right-hand derivative numbers.    

Aside from analyzing of these relations, we also found 

the conditions in which the right-hand derivative of a 

function is equal with its derivative. 

Let  f : a,b[ ]®B  be a function of the real variable x , 

where B  is a Banach space (a complete normed space), 

then the right-hand derivative of the function f , 

denoted by f+
'

, is defined to be, 

 

f+
'
x( )= lim

h®0

h>0( )

f x + h( )- f x( )
h

     

 To achieve the aim mentioned above we will use the 

next 2 lemmas:    

 

Lemma 1. If f : a,b[ ]®B  is a continuous function on 

interval a,b[ ] , and the right-hand derivative f+
'

 exists 

and it is bounded on a,b[ ), then there is a constant 

K ³ 0 , that for every  x Î a,b[ ) satisfies f+
'
x( ) £ K  

as,  

  f b( )- f a( ) £K b-a( ).                          (1) 

 

The proof for Lemma (1) is given in [2]. Inequality (1) 

can be also written as:     

 

f b( )- f a( ) £ b-a( ) sup
tÎ a,b[ )

f+
'
t( )             (2) 

 

Lemma 2. Let f : a,b[ ]®R  be a continuous function 

on interval a,b[ ] . Let us suppose that for any point 

x Î a,b[ ) the right-hand derivative f+
'
x( ) exists. Then, 

the following inequality is true for some c  and d  in   

a,b( ). 

  f+
'
c( )£

f b( )- f a( )
b-a

£ f+
'
d( )                    (3) 

    

A proof of this Lemma can be found in [4] or [8]. 
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2. GENERALIZATION OF SOME RESULTS ABOUT 
FUNCTIONS THAT HAVE BOUNDED RIGHT-HAND 
DERIVATIVES 

Theorem 1. If the function f : a,b[ ]®B  is 

continuous on the finite interval a,b[ ]  and has 

continuous right-hand derivative on a,b[ ), than function 

f  has a continuous derivative on a,b[ ).  

Proof. Consider a fixed point x0 Î a,b[ ) and any 

point x Î a,b[ ). Presenting the inequality (2) on interval 

x0,x[ ] x > x0( ) for the function and performing 

transformations we obtain,  

x a F x( )= f x( )- +
'f x0( ) x- x0( )

                 
(4) 

F x( )-F x0( ) £ x- x0( ) sup
tÎ x0 ,x[ ]

F+
'
t( )           (5) 

f x( )- f x0( )- +
'f x0( ) x- x0( ) £

£ x- x0( ) sup
tÎ x0 ,x[ ]

+
'f t( )- +

'f x0( )
             (6) 

Dividing by x- x0( ),  

f x( )- f x0( )
x- x0

- +
'f x0( ) £ sup

tÎ x0 ,x[ ]
+
'f t( )- f

+
'
x0( )     (7)  

It is obvious that the inequality (7) maintains the same 

form even if we write inequality (2) for the function F  

on interval x0,x[ ] x > x0( ). Passing to the limit on the 

both sides of (7) when x® x0  x ¹ x0( ), and take into 

consideration that function f+
'

 is continuous at 

point 0x , we obtain the following,        

0 £ lim
x®x0

f x( )- f x0( )
x- x0

- f+
'
x0( ) £ 0                    (8) 

Thus, we conclude 

0 £ f
'
x0( )- f+

'
x0( ) £ 0  or 

              f '
x0( )= f+

'
x0( )                              (9) 

Since x
0
 is an arbitrary point, the derivative f

'
x( ) 

exists for every x Î a,b[ ), assuming that f
'

 is 

continuous   on a,b[ ) like
 
f+

'
.   

Corollary. For continuous functions on a closed 

interval, the existence and continuity of the right-hand 

derivative f+
'

 is a necessary and sufficient condition for 

the existence and the continuity of the derivative f
'

. 

Theorem 2. Let, f : a,b[ ]®R  be a continuous 

function on interval a,b[ ] , which has right-hand 

derivative f+
'
t( ) at every point t Î a,b[ ). If the function 

f+
'

 is bounded on a,b[ ), then f+
'

 is Lebesgue 

integrable on every closed interval  a,x[ ] Ì a,b[ )and 

the following relationship is true.     

                                        

L( ) +
'
f

a

x

ò t( )dt= f x( )- f a( )                               (10) 

                   

Proof.  Let us apply lemma 2 to the function f on an 

arbitrary interval u,v[ ] Ì a,x[ ] . This implies that the 

inequalities (11) is true for some c , d   in u,v( ).    

 

f+
'
c( ) v-u( )£ f v( )- f u( )£ f+

'
d( ) v-u( )   (11) 

 

According to the hypothesis, the right-hand 

derivative f+
'

 is bounded on a,b[ ). This implies that 

f+
'

 is bounded on a,x[ ] , and there exists a constant 

M > 0  such that -M £ f+
'
t( )£M   for all t Î a,x[ ]. 

From (11) we obtain the followings for any 

interval u,v[ ] Ì a,x[ ] . 

 

-M v-u( )£ f v( )- f u( )£M v-u( )  or 

 

f v( )- f u( ) £M v-u( ) 

This implies that the function f is absolutely continuous 

on a,x[ ] . According to Lebesgue theorem (see [5] 

p.334-335) the derivative f
'

 is integrable on a,x[ ]  

and,                     

L( ) f '

a

x

ò t( )dt= f x( )- f a( )                (12) 

  The formula (10) derives from (12) substituting    

f+
' = f '

.  

 Corollary 1. There is no function from C a,b[ )whose 

right-hand derivative on a,b[ ) equals the Dirichlè 

function 

c x( )=
1,   if  x  is a  rational  number;

0,    if  x  is a  irrational number . 

ì 
í 
î 
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Let us suppose that there exists a function g Î C
a,b[ )  

such that 

"x Î a,b[ ), g+
'
x( )= c x( ). 

Since conditions of the theorem 1 are satisfied, formula 

(10) can be written as,          

"x Î a,b[ ); g x( )= g a( )+ L( ) g+
'

a

x

ò t( )dt            (13)      

Since  L( ) g+
'

a

x

ò t( )dt= 0, the identity (13) becomes, 

"x Î a,b[ ),  g x( )= g a( ), implying that   

g+
'
x( )= 0 ¹ c x( ). 

This is a contradiction.  

Corollary 2.  Let  f : a,b[ ]®R  be a continuous 

function on the interval a,b[ ] . If the function f+
'

 is 

bounded on a,b[ ), then the function f  is almost 

everywhere differentiable on a,b[ ), thus,   

      f '
x( )= f+

'
x( )                                 (14) 

(almost everywhere on a,b[ ])  

Proof.  Since every absolutely continuous function is 

differentiable almost everywhere, the function f  is 

almost differentiable on a,b[ ). 

Note. Moreover in [7] a stronger result than corollary 

2 is mentioned. This is, 

Suppose that a function f  is right (left) differentiable 

at almost every point of a,b[ ] .  Then f  is differentiable 

almost everywhere. 

We are going to prove a more general proposition, 

using the concept of right- hand derivative number.  

Definition. The number N+ f x0( )  (finite or 

infinite) is called "a right-hand derivative number" of the 

function f at the point x0  if there exists a sequence of 

positive numbers hn{ } such that hn ® 0  and 

 

lim
n®¥

f x0 + hn( )- f x0( )
hn

= N+ f x0( )             (15) 

 

It is obvious that every function f : a,b[ ]®R  at any 

point x0 Î a,b[ ) has at least one right -hand derivative 

number. Indeed, we discern two cases. Firstly, if the 

sequence (16) is unlimited, then from this sequence we 

can retrieve a subsequence that converges towards ¥ . 

               
f x0 + hn( )- f x0( )

hn
                                    (16) 

Secondly, if the sequence (16) is limited, then from this 

sequence we are able to retrieve a convergent 

subsequence. 

  If we denote N+ f x( ) the set of all derivative numbers 

of the function f  at x , then, in general, we can state 

that the function x a N+ f x( ) is not a single-value 

function.  

 Likewise, it is clear that the right- hand derivative at 

point x0  of the function f : a,b[ ]®R  exists at point 

x0  if and only if all right- hand derivative numbers of 

the function f at x0  are among themselves.  

In addition, we need a generalization of the lemma 2, 

which can be found in [3]:   

           

 If the function f : a,b[ ]®R  is continuous at a,b[ ] , 

then there exist at least two points cand d  at a,b( ) 

such that 

N+ f c( )£
f b( )- f a( )
b- a

£ N+ f d( )              (17) 

                                         

Where N+ f c( )and N+ f d( )are derivative numbers of 

the function f  at the points c  and d . 

Theorem 3. Let  f : a,b[ ]®R  be a 

continuous function on the closed interval a,b[ ] , which 

has a right-hand derivative number N+ f t( ) at every 

point, t Î a,b[ ). If the function N+ f  is bounded on 

a,b[ ), then the function f
'

 is Lebesgue integrable on 

every interval a,x[ ] Ì a,b[ ), according to, 

   L( ) f '
t( )

a

x

ò dt= f x( )- f a( )                     (18) 

            Proof. To prove this theorem, is sufficient to 

substitute f+
'
x( ) with N+ f x( ) in the proof of the 

theorem 2. 

 Corollary.  If the function N+ f x( ) is bounded on 

a,b[ ), then the function f  is almost everywhere 

differentiable on a,b[ ).                      

 Note. Which conditions must be met by the right-

hand derivative f+
'
 so that the formula (14) will hold 

true for every point x Î a,b[ )?   

 To give an answer to the above question we use the 

following proposition (lemma 3), which can be found in 

[1] (see theorem 3, p. 242-243).   
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            Lemma 3.  If  f  is a measurable function, 

bounded and it has the Darboux property on a,b[ ] , 

then for each closed subinterval I= p,q[ ] Ì a,b[ ]  there 

exists at least a point x Î I such tha 

L( ) f x( )
p

q

ò dx= f x( )I      I = q- p( )               (19) 

The point x  is called the mean point of  I  with respect 

to f .  

 Theorem 4.  If the right-hand derivative f+
'
 of a 

continuous function f : a,b[ ]®R  meets the following 

conditions: 

 1) f+
'
 is bounded, measurable and has the Darboux 

property on a,b[ ), and  

 2)  for each  x Î a,b[ ] and for each sequence of 

subintervals In = pn ,qn[ ]Ì a,b[ ] that converges  

towards a point x  In ® x( ), we have f+
'
xn( )® f+

'
x( ), 

where xn  is the mean point of In  with respect to f , 

then the function f  is everywhere differentiable in 

a,b[ ).  

 Proof. The function f+
'
 satisfies the 

conditions of theorem 4 according to, 

     L( ) f+' t( )
a

x

ò dt= f x( )- f a( )                 (20) 

 Take x Î a,b[ ), and let hn{ }  be an arbitrary nonzero 

sequence of real numbers such that hn ® 0 . Then 

 

lim
n®¥

f x + hn( )- f x( )
hn

= lim
n®¥

1

hn
f+

' t( )
x

x+hn
ò dt=

= lim
n®¥

1

hn
f+

' xn( ) x + hn - x( )= lim
n®¥

f+
' xn( )

 

 

 Thus, f
'
x( )= f+

'
x( ), that means the theorem 4 holds. 
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