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ABSTRACT 
In this paper, we introduce and study periodic Γ-

semigroups extending and generalizing the results 

obtained for periodic semigroups. We define a natural 

(equivalence) relation K in periodic Γ-semigroup that 

mimics the relation K in periodic semigroups studied 

by Schwarz. We investigate and characterize the 

periodic Γ-semigroups using Green's relations. The 

main purpose of this paper is to study the relationship 

between K and Green's relations, especially with the 

relation D and also with the relation N.  

Keywords: Γ-semigroup, Γ-group, Green's relation, 

simple, completely simple, weakly commutative, 

periodic 

 
PËRMBLEDHJE 
Në këtë punim, prezantojmë dhe studiojmë Γ-

gjysmëgrupet periodikë duke zgjeruar dhe 

përgjithësuar rezultatet e përftuara për gjysmëgrupet 

periodikë. Përkufizojmë nje relacion (ekuivalence) 

natyral K në Γ-gjysmëgrupet perodikë i cili imiton  

relacionin K në gjysmëgrupet periodikë të studiuar nga 

Schwarz. Ne shqyrtojmë dhe karakterizojmë Γ-

gjysmëgrupet periodikë duke përdorur relacionet e 

Green-it. Qëllimi kryesor i këtij punimi është të studiojë 

marrëdhënien midis relaconit K dhe relacioneve të 

Green-it, në veçanti me relacionin D dhe me relacionin 

N.  

Fjalë çelës: Γ-gjysmëgrup, Γ-grup, relacione të Green-

it, i thjeshtë, plotësisht i thjeshtë, dobësisht ndërrues, 

periodic.  

1. INTRODUCTION AND PRELIMINARIES 
In 1981, Sen [12] introduced the concept and notion 

of the Γ-semigroup as a generalization of plain 

semigroup. Many classical notions and results of the 

theory of semigroups have been extended and 

generalized to Γ-semigroups in several papers. Green's 

relations for Γ-semigroups defined in [2, 14], play an 

important role in studying the structure of Γ-

semigroups as well as in the case of the plain 

semigroups and have become a familiar tool among Γ-

semigroups. Periodic semigroups have been treated 

occasionally in the literature with essential 

contribution provided by Schwarz [10], Yamada [18], 

Sedlock [11], Miller [8]. In this paper we will study 

periodic Γ-semigroups. We investigate and characterize 

the periodic Γ-semigroups using Green's relations. We 

define a natural (equivalence) relation K in periodic Γ-

semigroup that mimics the relation K in periodic 

semigroups studied by Schwarz and study the 

relationship between K and Green's relations, 

especially with the relation D and also, with the 

relation N. One can extend this work, searching other 

neccessary and sufficient conditions in order that the 

relation K coincides with any one of the other Green's 

relations. 

In 1986, Sen and Saha [13] defined Γ-semigroup as 

a generalization of semigroup and ternary semigroup 

as follows:   

Definition 1.1 Let M and Γ  be two nonempty sets. 

Then M is called a Γ-semigroup if there exists a 

mapping M´Γ´M®Μ, written as (a,γ,b) aγb 

satisfying the following identity (aαb)bc=aa(bbc) for all 

a, b, cÎM and for all α, bÎΓ.  
Example 1.2 Let M be a semigroup and Γ  be any 

nonempty set. Define a mapping M´Γ´M®Μ by aγb=b 

for all a,bÎM and γÎΓ. Then M is a Γ -semigroup.   

Example 1.3 Let M be a set of all negative rational 

numbers. Obviously M is not a semigroup under usual 

product of rational numbers. Let 
1

= { : p
p

G -  is 

prime} . Let a, b, cÎM and αÎΓ. Now if aαb is equal to 

the usual product of rational numbers a, α, b then 

aαbÎM and (aαb)bc=aα(bbc). Hence M is a Γ -

semigroup.   

 Example 1.4 Let M ={−i, 0, i} and Γ=Μ. Then M is 

a Γ-semigroup under the multiplication over complex 

numbers while M is not a semigroup under complex 

number multiplication.   
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These examples show that every semigroup is a Γ-

semigroup. Therefore, Γ-semigroups are a 

generalization of semigroups. Other examples of G -

semigroups can be found in [4, 5, 13, 14, 17]. 

For nonempty subsets Α and Β of Μ and a 

nonempty subset Γ’ of Γ, let AΓ’B= {aγb: aÎA, bÎB and 

γÎΓ’}. If Α= {a}, then we also write a B¢G  instead of 

{a}Γ’Β, and similarly if Β={b} or Γ’={γ}. 

A G -semigroup Μ is called commutative Γ-

semigroup if for all a,bÎM and γÎΓ, aγb=bγa. A 

nonempty subset Κ of a Γ-semigroup Μ is called a sub-

G -semigroup of Μ if for all a, bÎK and γÎΓ, aγbÎK. 

Example 1.5 Let Μ= [0, 1] and 
1

= { |n
n

G  is a 

positive integer} . Then Μ is a Γ-semigroup under usual 

multiplication. Let Κ=[0,1/2]. We have that Κ is a 

nonemtpy subset of Μ and aγbÎK for all a,bÎK and 

γÎΓ. Then K  is a sub-Γ-semigroup of M .   

Definition 1.6 Let Μ be a Γ-semigroup. A non-

empty subset Ι of Μ is called a left (resp. right) ideal of 

Μ if MΓIÍI (resp. ΙΓΜÍΙ). A non-empty subset Ι of Μ is 

called an ideal of Μ if it is a left ideal as well as a right 

ideal of Μ.   

An element a of an Γ-semigroup Μ is called 

idempotent if a=aγa, for some γÎΓ. An element a of an 

Γ-semigroup M is called zero element of M if 

agb=bga=a, b M" Î  and g" ÎG  and it is denoted by 

0. A Γ-semigroup M is called left (respectively, right) 

simple if it does not contain proper left (respectively, 

right) ideals or equivalently, if for every left 

(respectively, right) ideal A of M, we have Α=Μ.  The 

element a of a Γ-semigroup M is called regular in M if 

aÎaΓMΓa, where aΓMΓa={(aαb)ba| a,bÎM, α,bÎΓ}. M 

is called regular if and only if every element of M is 

regular. 

 Definition 1.7 A Γ-semigroup M with zero element 

is called 0-simple (left 0-simple, right 0-simple) if   

    (1) ΜΓM¹{0}, and  

     (2) {0} is the only proper two sided (left, right)-

ideal of M.  

Definition 1.8 A two sided (left, right) ideal I of a Γ-

semigroup M is called  0-minimal if   

    (1) I¹{0}, and  

    (2) {0} is the only two sided (left, right) ideal of 

M contained in I.  

For each element a of a Γ-semigroup M, the left 

ideal MΓaÈ{a} containing a is the smallest left ideal of 

M containing a, for if A is any other left ideal 

containing a, then MΓaÈ{a} ÍA and this ideal is 

denoted by (a)l and called the principal left ideal 

generated by the element a. Similarly for each aÎM, 

the smallest right ideal containing a is aΓMÈ{a} which 

is denoted by (a)r and called the principal right ideal 

generated by the element a. The principal ideal of M 

generated by the element a  is denoted by (a) and 

(a)={a}È MΓaÈ{a}ΓM ÈMΓ{a}ΓM. 

Let M be a Γ-semigroup and x be a fixed element 

of Γ. We define a ba b  in M by = , ,a b axb a b M" Î= ,a b axb a= ,= ,b ab a . 

The authors [13] have shown that M is a semigroup 

and denoted this semigroup by Μx. They have shown 

that if Μx is a group for some xÎΓ, then 
xM  is a group 

for all xÎΓ. A Γ-semigroup M is called a Γ-group if Mx is 

a group for some (hence for all) xÎΓ. 

In [10] the authors defined the Green's 

equivalences on Γ-semigroup as follows: 

Let M be a Γ-semigroup. Let a,bÎM,  

aLbÛ(a)l=(b)l, aRbÛ(a)r=(b)r, aJbÛ(a)=(b), 

aHbÛaLb and aRb, aDbÛaLc and c bR  for some 

c MÎ . 

It is clear that a Γ-semigroup M is left [right] 

simple if and only if it consists of a single L[R] class, 

and that M is simple if and only if it consists of a single 

J-class. We say that a Γ-semigroup M is bisimple if it 

consists of a single D -class. Since DÍJ, every bisimple 

Γ-semigroup is also simple.   

  Definition 1.9 Let M a Γ-semigroup. If La and Lb 

are L -classes containing a and b of a Γ-semigroup M 

respectively, then La£ Lb if (a)lÍ(b)l. Then “£”is a partial 

order in /M L  which is the set of L -classes of M. 

Similarly Ra£ Rb and Ja£ Jb  are defined in /M R  and 

/M J .   

Definition 1.10 A Γ-semigroup M is said to satisfy 

minL or minR condition if every nonempty set of L -

classes or of R -classes possess a minimal member 

respectively.   

Definition 1.11 A Γ-semigroup M is called 

completely 0-simple if M  is 0-simple and it satisfies 

the minL and minR conditions.   

 

2. The natural equivalence and D A Γ-semigroup M 

is said to be a periodic Γ-semigroup [10] if for any aÎM 

and any γÎΓ, there exist positive integers n and m such 

that (aγ)
n
b=(aγ)

n+m
b  and b(γa)

n
=b(γa)

n+m
 for all bÎM. 

Equivalently, a Γ-semigroup M is said to be a periodic Γ-

semigroup if each element of M has a finite order, 

where the order of aÎM is the order of the cyclic sub-

Γ-semigroup of M generated by a, that is, to each 

element a of M, for all γÎΓ, there corresponds an 

idempotent e and a positive integer n such that (aγ)
n-

1
a=e for all γÎΓ; the element a is then said to belong to 

e. 

The fact that for each element a of a periodic Γ-

semigroup M some power of a is idempotent leads to 



Hila & Dine 

AKTET, Vol. III, Nr 1 

 
90 

defining a natural (equivalence) relation K  on M by: 

for a,bÎM, a bK  if and only if for all γÎΓ, there exists 

an idempotent e and integers m, n such that              

(aγ)
n-1

a=(bγ)
m-1

b=e. The K -classes of M will be 

denoted by K
e
, e idempotent. 

Let e be an idempotent. A sub-Γ-group G of Γ-

semigroup M is called maximal sub-Γ-group to belong 

to e if a) eÎG; and b) it is not properly contained in any 

other sub-Γ-group of M. This will be denoted by G
e
. For 

the set G
e
 we have obviously the following facts: 

I) for each α-idempotent e, eγx = xγe = x for each 

xÎK
e
, γÎΓ, and eαK

e
=K

e
αe=G

e
={xÎK

e
|eαx=xαe=x} is the 

maximal sub-Γ-group of M containing e; 

II) Μ is a union of sub-Γ-groups if and only if each 

element of Μ has index one if and only if for each 

idempotent e, K
e
=G

e
. 

III) for each idempotent e, He=G
e
. 

In [2], the authors proved the following: 

Theorem 2.1 [2, Theorem 3.4] If M  is a periodic 

Γ-semigroup, then =D J .   

We will determine necessary and sufficient 

conditions on a periodic Γ-semigroup Μ in order that 

K  coincides with any one of the Green relations. It is 

easily verifiable the following theorem. 

 Theorem 2.2 For each idempotent e in a periodic Γ-

semigroup Μ, K
e
ÇDe=G

e
. 

Corollary 2.3 For each idempotent e in a periodic Γ-

semigroup, K
e
ÇLe=G

e
 and K

e
ÇRe=G

e
.   

Corollary 2.4 Periodic Γ-semigroup Μ is a union of Γ-

subgroups if and only if ÍK D .   

Definition 2.5 Γ-semigroup Μ is weakly comutative if 

for each a,bÎM and α,γÎΓ, there exist x,yÎM  and an 

integer k such that ((aαb)γ)
k-1

(aαb)=xαa=bαy.   

Definition 2.6 Γ-semigroup Μ is a semilattice of Γ-

semigroups of type α if Μ is a disjoint union of Γ-

semigroups of type α{Mi|iÎI, I indexset}, and for each i, 

jÎI there exists kÎI such that MiΓMjÍMk and 

MjΓMiÍMk.   

Let Μ be a Γ-semigroup and F a sub-Γ-semigroup. 

Then F is called a filter of M if a,bÎM, 

aγbÎF(γÎΓ)ÞaÎF and bÎF [4,15]. It is clear that for 

every aÎM there is a unique smallest filter of M 

containing the element a, denoted by N(a), which is 

called the principal filter generated by a. We denote by 

" "N  the equivalence relation on M defined by 
2

= {( , ) | ( )= ( )}a b M N a N bÎN . N  is a semilattice 

congruence on M. For any aÎM, the N -class 

containing a is denoted by ( )a
N

 and it is clear that it is 

a sub-Γ-semigroup of M. On the set 

/ = {( ) | }M a a MÎ
N

N  we define ( ) ( ) =( )a b a bg g
N N N

, for 

all ( ) ,( ) / ,a b M gÎ ÎG
N N

N . It is clear that the set 

/M N  is a Γ-semigroup. 

Theorem 2.7 Let M be a Γ-semigroup. For every 

xÎM, N(x)={yÎM|<x>ÇMΓyÇyΓM¹Æ} if and only if M  

is weakly commutative.   

  Proof. We first prove the necessity. Let x,yÎM. 

Then, for αÎΓ, 

xÎN(x)ÍN(xαy)={zÎM|<xαy>ÇMΓzÇzΓM¹Æ}  and thus 

((xαy)γ)
m-1

(xαy)=aαx for some aÎM and some integer 

m; similarly, ((xαy)γ)
n-1

(xαy)=yαb for some bÎM and 

some integer n. If m>n, then  
1

(( ) ) ( )= = [ (( ) ) ( )]
m m n

x y x y a x y b x y x ya g a a a g a g a- - ; the 

other cases are similar. Hence M is weakly 

commutative. 

We next prove the sufficiency. Let xÎM and let 

T={yÎM|<x>ÇMΓy¹Æ}.  

 We first show that T is filter of M; this together 

with the fact that xÎT will prove that N(x)ÍT. If y,zÎT, 

then for all γÎΓ, (xγ)
m-1

x=aαy and (xγ)
n-1

x=bbz for some 

a,bÎM, α,bÎΓ and for some integer m, n. Since M is 

weakly commutative, (xγ)
nr-1

x=((bbz)γ)
r-1

(bbz)=zδc for 

some cÎM, δÎΓ and for some integer r. Consequently 

(xγ)
(m+nr)-1

x=[aα(yγz)]δc, whence, again by weak 

commutativity, (xγ)
(m+nr)k-1

x=dρ[aα(yγz)] for some dÎM, 

ρÎΓ and for some integer k. Thus, yγzÎT for all γÎΓ. 

Conversely, suppose that yγzÎT for all γÎΓ. Hence 

(xγ)
m-1

x=(aαy)γz for some aÎM, αÎΓ and for some 

integer m, and thus zÎT. It follows by weak 

commutativity that (xγ)
mn-1

x=([(aαy)γz]γ)
n-1

=([(aαy)γz]= 

=bb(aαy) for some bÎM, bÎΓ and for some integer n; 

that is, yÎT. Hence T is a filter and N(x)ÍT. Since the 

opposite inclusion is clearly satisfied, we have N(x)=T. 

By symmetry we conclude that also 

N(x)={yÎM|<x>ÇyΓM¹Æ}. It is easily to see that the 

set  {yÎM|<x>ÇyΓM¹Æ}Ç{yÎM|<x>ÇMΓy¹Æ} is the 

one in the statement of the theorem. 

Theorem 2.8 Let M be a periodic Γ-semigroup. 

Then every K
e
 is an N -class of M if and only if M is 

weakly commutative.   

  Proof. Suppose that every K
e
 is an N -class of M. 

If x, yÎM, then , ( ) = f
x y y x x y Ka a aÎ

N
 for all αÎΓ and 

for some γ-idempotent f. Thus, ((xαy)γ)
m-1

(xαy)= 

=((yαx)γ)
n-1

(yαx)=f for some m and n. Hence  

((xαy)γ)
m-1

(xαy)=((yαx)γ)
2n-1

(yαx)=yα[xγ((yαx)γ)
2n-1

]= 

=[((yαx)γ)
2n-1

(yαx)γy]αx . 

 Conversely, suppose M is weakly commutative. 

For any xÎM, ( )x
N

 is Γ-semigroup and thus contains an 

idempotent. If , ( )e f E xgÎ Ç
N

, then e= aγf and f=eγb 

for some a, bÎM by Theorem 2.7. Consequently,  

 e=aγf=(aγf)γf=eγf=eγ(eγb)=eγb=f. Hence ( ) e
x KÍ
N

 

and since the opposite inclusion is obvious, we 
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conclude that ( ) = e
x K
N

. 

Proposition 2.9 If M is a weakly commutative 

periodic Γ-semigroup, then =ÍD K N  and each 

maximal sub-Γ-group is a D -class of M.   

  Proof. It can be easily verified. We omit it.  

Definition 2.10 A Γ-semigroup M is called 

unipotent if it contains exactly one idempotent.   

Definition 2.11 An element u of a Γ-semigroup M 

is called a zeroid element of M if, for each element a of 

M, there exist x,yÎM, α, bÎΓ such that aαx=yba=u.   

Definition 2.12 Γ-homogroup is called a                 

Γ-semigroup having zeroid elements.   

Let M be a periodic Γ-semigroup. We introduce 

the following three conditions which will play principal 

roles in sequel. 

Condition A. For any elements a, bÎM and γÎΓ, if 

(aγ)
n-1

a=(bγ)
m-1

b for some integer n, m, then for all 

αÎΓ, there exist three positive integer r, s and t such 

that ((aαb)γ)
r-1

(aαb)=(aγ)
s
aα(bγ)

t
b=(bγ)

t
bα(aγ)

s
a. 

Condition B. For any elements a,bÎM, and for any 

positive integers n, m and α, γÎΓ, then there exist two 

positive integer r, s such that ((aαb)γ)
r
(aαb)=               

=((aγ)
n-1

aα(bγ)
m-1

b)γ)
s-1

((aγ)
n-1

aα(bγ)
m-1

b)). 

Condition C. For any elements a,bÎM, and for any 

positive integers n, m and α, γÎΓ, then there exist two 

positive integer r, s such that ((aαb)γ)
r-1

(aαb)=              

=(((aγ)
n-1

aα(bγ)
m-1

b)γ)
s-1

((aγ)
n-1

aα(bγ)
m-1

b))= 

=(((bγ)
m1

bα(aγ)
n-1

a)γ)
t-1

(bγ)
m-1

bα(aγ)
n-1

a).  

Lemma 2.13 For periodic Γ-semigroups, Condition 

A is a consequence of Condition B.   

Proof. It can be easily verified. We omit it.  
Lemma 2.14 For periodic Γ-semigroups, Condition 

B is a consequence of Condition C.   

Proof. It is immediate from the definitions of 

Conditions B and C. 

Theorem 2.15 A periodic Γ-semigroup M is 

decomposable into the class sum of mutually disjoint 

unipotent Γ-homogroups if and only if it satisfies 

Condition A. Further, in this case such a decomposition 

is uniquely determined.   

 Proof. Let M  satisfies Condition A. To prove the 

" "if  part of this theorem, we need to show only that 

each K
e
 is a Γ-homogroup. If a, b are two elements of 

K
e
, then there exist integers n, m such that                  

(aγ)
n-1

a=(bγ)
m-1

b=e. Since M satisfies Condition A, there 

exist three positive integer r, s and t such that    

((aαb)γ)
r-1

(aαb)=(aγ)
s-1

aα(bγ)
t-1

b=(bγ)
t-1

bα(aγ)
s-1

a. 

Hence, ((aαb)γ)
rnm-1

(aαb)=(aγ)
snm-1

aα(bγ)
tnm-1

b=e. This 

implies that K
e
 is Γ-semigroup. Since e is clearly a zeroid 

element of K
e
, the semigroup K

e
 is a Γ-homogroup. 

Conversely, assume that M is decomposed into 

the class sum of mutually disjoint unipotent                         

Γ-homogroups Hi and suppose that (aγ)
n-1

a=(bγ)
m-1

b. 

Then both a and b are contained in the same                     

Γ-homogroup, say Hi, since there exists an idempotent 

e and an integer s such that (aγ)
ns-1

a=(bγ)
ms-1

b=e. 

Therefore, aαbÎHi, and, 

       (aγ)
ns-1

aα(bγ)
ms-1

b=(bγ)
ms-1

bα(aγ)
ns-1

a=e= 

                                       =(((aαb)γ)
r-1

(aαb).  

for some integer r. Thus, the proof of the first half of 

this theorem is complete. The latter half of this 

theorem is clear. 

A band is an idempotent Γ-semigroup. Let J be a 

band. A Γ-semigroup G is said to be a band J of                   

Γ-semigroups of type T, if G is the class sum of a set 

{Gi|iÎJ} of mutually disjoint sub-Γ-semigroup Gi each 

type T, such that for any i,jÎJ, GiΓGjÌGiγj, γÎΓ. If J is a 

commutative band, that is, if J is a semilattice, then M 

is called a semilattice of Γ-semigroups of type T. 

Theorem 2.16 A periodic Γ-semigroup M is 

decomposable into a band of unipotent Γ-homogroups 

if and only if it satisfies Condition B.  Further, in this 

case such a decomposition is uniquely determined.   

  Proof. Assume that M is a band of unipotent             

Γ-homogroup Hi. Let a, bÎM and n, m be any integers. 

Then, there exist Hi and Hj which contain a and b 

respectively. Since, by the assumption on M, both aαb 

and (aγ)
n-1

aα(bγ)
m-1

b are contained in Hiαj, there exist 

integers r and s such that ((aαb)γ)
r-1

(aαb)=eiαj where 

eiαj is the idempotent of Hiαj. Conversely, let M satisfies 

Condition B. By Theorem 2.15, M is the class sum of 

mutually disjoint unipotent Γ-homogroups Hi, since M 

satisfies also Condition A. Pick up any a1, a2ÎHi and b1, 

b2ÎHj respectively. There exist integers n1, n2, m1, m2  

such 

1 2 1 2
1 1 2 2 1 1 2 2

1 1 1 1
( ) = ,( ) = ,( ) = ,( ) =

n n m m

i i j ja a e a a e b b e b b eg g g g
- - - -

 where ei, ej are idempotents of Hi and Hj respectively. 

By Condition B, we have  

 
1 11 1

1 1 1 1(( ) ) ( )= (( ) ) ( )
r s

i j i ja b a b e e e ea g a a g a
- -

  and 

1 12 2
2 2 2 2(( ) ) ( )= (( ) ) ( )

r s

i j i ja b a b e e e ea g a a g a
- -

  

for some integers r1, s1, r2, s2. 

If eiαejÎHt, there exists an integer n such that 

((eiαej)γ)
n-1

(eiαej)=et, where et is the idempotent of Ht. 

Therefore, we have 
1 11 1

1 1 1 1

1 12 2
2 2 2 2

(( ) ) ( ) (( ) ) ( )

(( ) ) ( ) (( ) ) ( ).

r n s n

i j i j t

s n r n

i j i j

a b a b e e e e e

e e e e a b a b

a g a a g a

a g a a g a

- -

- -

= = =

= =
 

This implies that both a1αb1 and a2αb2 are 

contained in Ηt, that is, HiΓHjÌHt. Thus, the proof of the 

first half of this theorem is complete. The latter half of 

the theroem follows from Theorem 2.15. 

Theorem 2.17 A periodic Γ-semigroup M is 

decomposable into a semilattice of unipotent                       
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Γ-homogroups if and only if it satisfies Condition C.  

Further, in this case such a decomposition is uniquely 

determined.   

Proof.  Let M satisfies Condition C. By Lemma 

2.14, M satisfies Condition B. Therefore, by Theorem 

2.16, M is decomposed uniquely into a band J of 

unipotent Γ-homogroups Hi. Let a, bÎM. Then, by 

Condition C, there exist two integers s, t such that 

((aαb)γ)
s-1

(aαb)=((bαa)γ)
t-1

(bαa). Hence, there exists Hi 

which contains both aαb and bαa. This implies that J is 

a semilattice. 

Conversely, assume that M is decomposable into 

a semilattice of unipotent Γ-homogroups Hi. Let a, 

bÎM and n, m be any integers. Since M satisfies 

Condition B, there exist integers r1, r2, r3, r4 such that 

 
1 1 1 11 21 1

(( ) ) ( )= (( ) ( ) ) ) (( ) ( ) ))
r rn m n m

a b a b a a b b a a b ba g a g a g g g a g- - - -- -
  

and 

1 1 1 13 4
1 1

(( ) ) ( )= (( ) ( ) ) ) (( ) ( ) ))
r rm n m n

b a b a b b a a b b a aa g a g a g g g a g- - - -- -
. 

On the other hand, it follows from our assumption 

on M that aαb and bαa are contained in the same 

unipotent Γ-homogroup, say Hi under the 

decomposition. Hence, there exist two integers t1, t2 

such that 1 21 1
(( ) ) ( )= (( ) ) ( )=

t t

ia b a b b a b a ea g a a g a
- -

, 

where ei is the idempotent of Hi. Consequently, we 

have  

1 2 1 3

1 1 1 11 2 2 3

1 1 1 11 2 1 4

1
(( ) ) ( ) =

1
(( ) ( ) ) ) (( ) ( ) )) =

1
(( ) ( ) ) ) (( ) ( ) )).

t

tn m n m

tm n m n

t r r
a b a b

t r r
a a b b a a b b

t r r
b b a a b b a a

a g a

g a g g g a g

g a g g g a g

- - - -

- - - -

-

-
=

-
=

 

Lemma 2.18 Periodic Γ-semigroup M is weakly 

commutative if and only if it satifies Condition C.   

 Proof.  It can be easily verified. We omit it.  

To prove the main theorem, we need some other 

results as follows. As an application of the results 

proved in Theorem 1, Theorem 2 and Theorem 3 in [7] 

and Proposition 2.21 in [6], we have the following: 

Lemma 2.19 A Γ-semigroup M is left [right, intra-] 

regular if and only if every left [right, two-sided] ideal 

of M is semiprime.   

Theorem 2.20 The following are equivalent 

conditions on a Γ-semigroup M.   

     (1) M is left regular.  

     (2)  Every left ideal of M is semiprime.  

     (3)  Every L-class of M is a left simple sub-Γ-

semigroup of M.  

     (4)  Every left L-class of M is a sub-Γ-semigroup 

of M.  

     (5) M is a disjoint union of left simple sub-Γ-

semigroups.  

     (6) M is a union of left simple sub-Γ-semigroups.  

Theorem 2.21 The following are equivalent 

conditions on a Γ-semigroup M.   

     (1) M is a union of Γ-groups.  

     (2) M is both left and right regular.  

     (3) Every left and every right ideal of M is 

semiprime.  

     (4) Every H-class of M is a Γ-group.  

     (5) M is a union of disjoint Γ-groups.  

Proof. If (1) holds, then M is clearly left regular, 

right regular and regular; for we may solve xγaμa=a, 

aμαγy=a, aγzμa=a for some γ, μÎΓ and x,y,z within a 

sub-Γ-group of M to which a belongs. Thus (1) implies 

(2). Moreover, (2) is equivalent to (3) by Lemma 2.19. 

By definition of left and right regular Γ-semigroup 

and by Greens' Theorem for Γ-semigroups [9, Theorem 

2.1], it follows that (4) holds. (4) implies (5) since              

H-classes are disjoint, and (5) implies (1) trivially. So, 

we have established the equivalence of (1), (2), (3), (4) 

and (5). 

Theorem 2.22 The following four statements are 

equivalent.   

     (1)M is a union of simple Γ-semigroups.  

     (2) M is intra-regular.  

     (3) Every ideal of M is semiprime.  

     (4) The principal ideals of M constitute a 

semilattice Y under intersection; in fact J(a)ÇJ(b)=J(agb) 

for every a, bÎM, γÎΓ; furthermore, M is the union of 

the semilattice Y of simple Γ-semigroups Mi(iÎY), each 

Mi being a J-class of M.  

Proof. By Lemma 2.19, Theorem 2.20 and 

Theorem 2.21 it follows that (1) implies (2) and (2) is 

equivalent to (3). Evidently (4) implies (1). The proof of 

the fact that (4) follows from (2) and (3) can be done 

by easily respectively modifications in the last part of 

the proof of Theorem 4.4 in [Error! Reference source 
not found.]. 

Theorem 2.23 The following statements are 

mutually equivalent.   

     (1) M is union of Γ-groups.  

     (2) M is a union of completely simple Γ-

semigroups.  

     (3) M is a semilattice Y of completely simple Γ-

semigroups Mi(iÎY), where Y is the semilattice of 

principal ideals of M, and each Mi is a J-class of M.  

Proof. (3) implies (2) trivially and (2) implies (1) by 

Lemma 2.9 [16] and Theorem 2.1 [9]. By Theorem 2.22, 

(1) implies (3) except for the complete simplicity of the 

simple sub-Γ-semigroup Mi. This is immediate from the 

Theorem 4.4 [16], since each J-class Mi is a union of 

the H-classes of M contained in it, while (1) implies 

that every H-classes of M is a Γ-group from Theorem 

2.21. 

Now we prove the main theorem of this section. 
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Theorem 2.24 Let Μ be a periodic Γ-semigroup. 

Then the following are equivalent:   

(1) Μ is a semilattice of Γ-subgroups.  

(2) Μ is a union of Γ-subgroups and weakly 

commutative.  

(3) K=D.  

Proof. (1) (2)Þ . Since Μ is a semilattice of 

(periodic) Γ-subgroups, then it is trivially both a union 

of Γ-subgroups and a semilattice of unipotent                     

Γ-homogroups. Due to Theorem 2.17, Μ satisfies 

condition Ψ, and by Lemma 2.18 it is weakly 

commutative. 

(2) (3)Þ . If Μ is a union of Γ-subgroups, then for 

each idempotent e, K
e
=G

e
=He. Thus K=H. Therefore, 

combining this with all the above mentioned results, 

we get D=JÍN=K=H. However, it follows from the 

definitions of Green's relations that HÍLÍD and 

HÍRÍD. So all of Green's relations coincide with K. 

(3) (1)Þ . From Corollary 2.4, KÍD implies that 

Μ is union Γ-subgroups, that is, each K-class is a 

maximal Γ-group. By Theorem 2.23, Μ is a semilattice 

of  D=H-classes. 
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