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SUMMARY 

The aim of this paper is to develop improved methods for finding the multiple  and simple roots of polynomial 

equations. The improved methods are based on Durand-Kerner method (a modification of Weierstrass method) and 

Laguerre method. The new simultaneous method has higher order of convergence and high computational 

efficiency since the accelerated convergence is attained with only negligible number of additional numerical 

operations. We have studied two classes of algorithms for solving polynomial equations: those with a known order 

of multiplicity and others with no information on multiplicity. For the second class we have proposed a suitable 

algorithm that computes simultaneously the distinct roots of polynomials and their respective multiplicities. 
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1. INTRODUCTION 

Laguerre’s method belongs to the most powerful 

methods for solving polynomial equations. Two 

modifications of Laguerre’s method, which 

enable simultaneous determination of all simple 

zeros of a polynomial and posses the 

convergence rate at least four, were proposed by 

Hansen, Patrick and Rusnak [1]. In Section 2 we 

present a fixed point relation of Laguerre’s type, 

which is concerned with multiple zeros of a 

polynomial. A significant improvement of 

computational efficiency of simultaneous 

methods can be achieved by using suitable 

correction terms. Such an approach, based on 

Nourein’s idea [11] for the simultaneous 

methods, was applied for the first time in [12, M. 

S. Petrović, C. Carstensen, On some improved 

inclision methods for polynomial roots with 

Weierstrass’ correction, Comput. Math. Appl. 25 

(1993), 73-82] to the Börsch-Supan-like method. 

Based in this idea,  in Section 3 we develop a new 

simultaneous method for finding simple roots of 

polynomials, modifing the Weierstrass function. 

The developing of this last method for finding 

simple roots of polynomials is related to the fact 

that in Section 3 we also discuss the problem 

when the multiplicity of the root is not known, 

and the technique we use is deflating the 

multiple roots into simple ones and implement 

the proposed simultaneous method for 

computing them.  

 

2. SIMULTANEOUS METHODS FOR FINDING 

MULTIPLE ZEROS 

Let P be a monic polynomial of degree n with 

multiple zeros k1 λ,,λ L  ( )nk  of the respective 

multiplicities k1 m,,m L  

k

1=j

jm
j)λz(=)z(P .  (2.1) 

 

We shall not consider in this section the problem 

of determining the order of multiplicity, to leave 

space for it in the next section. 

For the point iz=z { }( )k,,1=Ii k L  let us 

introduce the notations: 
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In [5, M. Petrović, L. Rancić, D. Milosević, 

Laguerre-like methods for the simultaneous 

approximation of polynomial multiple zeros, 

Yugoslav Journal of Operational Research, 16 

(2006), Number 1, 31-44] is derived the following 

fixed point relation 
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which is suitable for the construction of iterative 

methods for the simultaneous finding multiple 

zeros of a given polynomial in ordinary complex 

arithmetic as well as complex interval arithmetic. 

If we substitute the exact zeros appearing in the 

sums i,1 and i,2 by their approximations, we 

obtain the sums 
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which are some approximations to i,1 and 

i,2 . Then  
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is an approximation to i  and the relation (2.2) 

becomes 
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Let 
)0(

k
)0(

1 z,,z L  be initial approximations to the 

zeros k1 λ,,λ L  of P. Based on the last relation 

(2.4) we can construct the following iterative 

method of Laguerre’s type for finding multiple 

zeros of a polynomial, 
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where the index L,1,0=r  is related to the r-th 

iterative step. If all the zeros of P are simple 

( )1=m==m=m n21 L , then the iterative 

method (2.5) reduces to the Laguerre-like 

simultaneous method in [1]. In [5, M. Petrović, L. 

Rancić, D. Milosević, Laguerre-like methods for 

the simultaneous approximation of polynomial 

multiple zeros, Yugoslav Journal of Operational 

Research, 16 (2006), Number 1, 31-44] is proved 

that if we use the already calculated 

approximations in the current iteration (Gauss-

Seidel approach or serial mode), we obtain the 

Laguerre-like single-step method 
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with order of convergence increased by one. 
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3. SIMULTANEOUS METHODS FOR FINDING 

SIMPLE ZEROS 

First, Durand in [2] and later Kerner in [3] 

indipendently proposed Durand-Kerner method 

also known as Weiestrass method 

 

iii Wz=ẑ     (3.1) 

where  

n
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1=j

ji

i
i

)zz(

)z(P
=W   (3.2) 

of the second order for the simultaneous finding 

of simple zeros of a polynomial P.  

In this section we shall present iterative methods 

of Weierstrass’ type for the simultaneous 

inclusion of simple zeros of a polynomial where 

the improved convergence is attained by using 

suitable corrections. 

Let, 

,
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be Newton’s and Halley’s corrections appearing 

in the well-known iterative formulas iii Nz=ẑ  

(Newton’s method), iii Hz=ẑ  (Halley’s method) 

of the second and third order, respectively. 

Let be n21 z,,z,z L  the approximations to the 

zeros n1 λ,,λ L , of a monic polynomial of order 

n. Using the improved approximations jjj Nz=c  

or jjj Hz=c
 

defined as the modified 

Weierstrass function 

( )
n

ij
1=j

j

i

cz

)z(P
=)z(W~ .    (3.3) 

We don’t stop here with the modifications done 

by M.S.Petrović and  L.D.Petrović in [4]. The 

modification we propose follows an idea 

borrowed from numerical linear algebra, where it 

leads from Jacobi’s method to Gauss-Seidel’s. The 

idea is to use at every moment the latest 

computed components of the approximate 

solution vector in order to compute the next 

component, rather than using the “old” 

approximate solution vector to compute the 

entire “new” vector. The Gauss-Seidel approach 

or serial mode is applied in different methods to 

accelerate the convergence speed, for example in 

the Weierstrass method in [6], in the Laguerre 

method in [15] in the Laguerre-like method in [5] 

and in the interval method of Weierstrass’ type in 

[14]. In this paper we apply this approach in the 

modified Weierstrass function (3.3) [4] achieving 

a new modification of the Weierstrass function 
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1i

1=j

n

1+i=j

)r(
j

)r(
i

)1+r(
j

)r(
i

)r(
i)r(

ii

czcz

)z(P
=)z(W

r
, 

n,,1=i L .   (3.4) 

All applications are based on the fact that the 

rational function W (or W~ , W
r

) has the same 

zeros as the polynomial P. We emphasize that the 

use of corrections is justified only when its 

evaluations can be performed by the already 

calculated quantities. In this way the order of 

convergence is increaced using negligible number 

of numerical operations giving a higher 

computation efficiency of the stated method.  

Applying the new modified Weierstrass function 

W
r

 (3.4) proposed by us, instead of )z(P  in the 

Newton method, gives the new method 

( )i
'
i

i
ii

zW

)z(W
z=ẑ r

r

   (3.5) 

which has order of convergenve five when we 

use Newton’s corrections and six when we use 

Halley’s corrections. 

To construct other new methods with 

accelerated convergence we can apply the new 

modified Weierstrass function W
r

 in Ehrlich-

Aberth method [13] and Ostrowski method [16], 

both of the third order for simple roots.  

Finally, a few words about iterative methods with 

a known multiplicity. Most of the papers treating 

such methods begin with the phrase “Let α  be a 

root of P  with the given multiplicity m , ...,” with 

no information how to provide the exact m .  

In the following we shall consider the case when 

the order of multiplicity is not known. The idea 

most frequently used is to deflate all multiple 
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roots into simple ones. So, if α  is a multiple root 

of a polynomial P , then α  is a simple root of the 

ratio P/P . 

We refer to the following corollary [7, 8]. 

 

Corollary. Assume that )z(P  has n  roots and 

among them there are k  distinct roots, each 

denoted by iλ  with multiplicity im  for k,,1=i L , 

respectively. Then, )z(P  and its first derivative, 

)z(P , have only one greatest common divisor 

(GCD) 

( )
k

1=i

1im
ic λz=)z(P ,  (3.6) 

such that 

)z(P)z(P=)z(P 0c   and  )z(P)z(P=)z(P 1c ,  (3.7) 

where )z(P0  has exactly the same k  distinct 

roots, iλ , as those of )z(P , which are all simple 

roots. The multiplicity of any root, iλ , can be 

determined by 

,
)λ(P

)λ(P
=m

i
'
0

i1
i   for k,,1=i L .  (3.8) 

Algorithm for finding simultaneously the 

polynomial roots with the respective 

multiplicities. Using the notations of the corollary 

we construct the following pseudocode. 

Step 1. Compute )z(P  of degree 1n . 

Step 2. Find the GCD )z(dgc  of )z(P  and )z(P  

using the Euclidean algorithm. 

Step 3. Compute )z(d/)z(P=)z(q gcp  and 

)z(d/)z(P=)z(q gcg . 

Step 4. Employ the simultaneous method (3.5) to 

determine all the k  roots iλ , distinct and simple, 

of )z(qp . 

Step 5. The multiplicities 1=mi  for k,,1=i L  if 

the GCD )z(dgc  is a constant (polynomial). 

Otherwise, calculate the multiplicities 

( ) ( )i
'
pigi λqλq=m . 

Step 6. Output the k  roots iλ  with their 

multiplicities im . 

Two computational aspects of this algorithm are 

considered. Step 2 involves algebraic operations 

to search for the GCD of two polynomials. The 

step has computational complexity )n(O
2

 with 

Euclidean algorithm, which is the extension to 

polynomials of the Euclidean algorithm for 

obtaining the GCD of two positive integers, or 

)nlogn(O
2

 with a fast version of the algorithm. 

Step 4 uses a simultaneous method to find simple 

roots of polynomials. The efficiency of this 

method that reveals its computational complexity 

is obtained by measuring the order of 

convergence. The order of convergence of our 

method is five (using the Newton’s corrections) 

and six (using the Halley’s corrections), and as we 

are using a simultaneous method for determining 

k  simple roots, this algorithm finds 

simultaneously even their multiplicities. These 

are the reasons that lead us to try to implement 

this algorithm to a parallel computer in a further 

work.  

 

4. NUMERICAL EXPERIMENTS 

In this section we report on numerical 

experiments using Durand-Kerner method [1, 2] 

(DK) (3.1), Ehrlich-Aberth method [13] (EA), 

Durand-Kerner method with Newton’s 

correction(DKN) (3.3) and Durand-Kerner method 

with Newton’s correction and Gauss-Seidel 

approach (DKNGS). 

In our example we took a cubic polynomial 

having three simple roots  

4=x,1=x,2=x 321 , )4x)(1+x)(2x(=)x(P3 . 

Here we started with initial approximations 

)5;5.1;5.1(=x
)0(

 and the approximations 

achieved for the same error )10(
4

 are given in 

Table 1. The results are obtained using Matlab 

7.3.0. 

 

Method DK EA DKN DKNGS 

Order of 

convergenve 

2 3 3 5 

Number of 

iterations 

5 3 3 2 

Table 1 
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We have performed a lot of numerical 

experiments and found that the methods DKN 

and DKNGS demostrate very fast convercence 

even for crude initial approximations. 

The convergence behaviour and numerical 

characteristics of the method (3.5) and the 

methods constructed by applying W
r

 to Ehrlich-

Aberth method [13] and Ostrowski method [16] 

and their implementation in a parallel computer 

will be considered in the forthcoming work. 

 

5. CONCLUSIONS 

To find the multiple roots of polynomials 

simultaneously when the multiplicity is known, is 

a solved problem and as discussed in Section 2 

the convergence order is at least four. The case 

when the multiplicity is not known is more 

difficult. We have presented an algorithm that 

deflates all multiple roots into simple ones and 

computes their multiplicities without using higher 

derivatives evaluations, compared with the 

formula proposed by Traub [9], Laguanelle and 

modified Laguanelle formula [10]. Then in this 

algorithm we have implemented the new method 

(3.5) with higher order of covergence compared 

with those for multiple roots and eliminates the 

evaluation of higher derivatives in the 

intermediate steps. 
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