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PËRMBLEDHJE 
Ne kete punim do te paraqesim disa rezultate te reja lidhur me analizen e ekuacioneve integrale te llojit te pare ne 

teorine e shperhapjes inverse. Me hollesisht, do te trajtojme te ashtuquajturin operator Far field dhe ekuacionin 

integral korrespondues. Si operatori dhe ekuacioni Far field jane baze per ndertimin e algoritmeve ne teorine e 

shperhapjes inverse sic eshte  metoda e modelimit linear .Gjithashtu do te studiojme ekuacionin integral te llojit te 

pare qe shfaqet ne metoden e dekompozimit per rikonstruktimin e formes (konturit) ne zgjidhjen e problemit te 

shperhapjes inverse me pengesa.Do te zbatojme teknika te ndryshme si ajo e Tikhonov dhe e trungezimit per te 

arritur ne nje zgjidhje te qendrueshme te ketyre ekuacioneve. 

 

SUMMARY 
In this paper we discuss some new results related to the analysis of ill posed first kind integral equations arising in 

the solution of obstacle inverse scattering theory. More specifically, we investigate the so-called far field operator 

and the corresponding far field equation. Both the far field operator and the far field equation constitute theoretical 

basis of uniqueness and reconstruction algorithms in the inverse scattering theory such as the linear sampling 

method. We study the first kind integral equations associated with the decomposition method and the linear 

sampling method for solving the inverse obstacle scattering problem. We show how to apply various regularization 

techniques such as cut-off and Tikhonov regularization to compute a stable solution to these equations. 
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1 INTRODUCTION 
The field of inverse problems is a relatively new 

area of mathematical research having its origin in 

the fundamental papers of Tikhonov in mid-

1960s. The reason the area is so young is 

historical prejudice dating back to Hadamard who 

claimed that the only problems of physical 

interest were those that had a unique solution 

depending continuously on the given data. Such 

problems were called well-posed, and the 

problems that were not well – posed were 

labeled ill-posed. The development of the 

mathematical theory of ill-posed problems, 

together with the rapid development of 

computing facilities, set the stage for the 

subsequent mathematical investigation in the 

inverse problems [3], [6 ]. In this paper we 

discuss some new results related to the analysis 

of ill posed first kind integral equations arising in 

the solution of the obstacle inverse scattering 

prolem. More specifically, we investigate the so 

called far field operator ]2,0[L]2,0[L:F
22 p®p  and 

the corresponding far field equation. We also 

investigate an ill-posed first kind integral 

equation which appears in the decomposition 

method for shape reconstruction in the obstacle 

inverse scattering problem. We show how 

various regularization techniques such as spectral 
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cut-off, Tikhonov regularization and the 

discrepancy principle are applied to regularize 

the far field equation and how its regularized 

solution is related to the inverse scattering 

theory. 

2. ILL- POSED EQUATIONS AND 
REGULARIZATION TECHNIQUES 
Let VU:A ®  be an operator, from XUÎ  into 

YVÎ  where X, Y are normed spaces. The 

equation fA =j  is called well-posed if A is 

bijective and UV:A
1 ®-  is continuous. 

Otherwise fA =j  is called ill-posed. 

Theorem2.1 Let X and Y be normed spaces and 

let VU:A ® be a compact operator. Than 

fA =j is ill-posed if X is not of finite dimension. 

Proof. Assume 
1

A
-

 exist and is continuous. Then 

XX:AAI
1 ®= - is compact hence X is finite 

dimension, which ends the proof. 

The discontinuity of A
-1

 leads to the instability of 

the solution . Methods for constructing a stable 

approximate solution to an ill-posed problem are 

called regularization methods. In particular, for A 

a bounded linear operator, we want to 

approximate the solution  of A  = f from a 

knowledge of a perturbed right hand side with a 

known error level . When 

)X(AfÎ then if A is injective there exists a unique 

solution  of fA =j . However, in general we 

cannot except that )X(Af Îd .  How do we 

construct a reasonable approximation  to  

that depends continuously on ? 

Definition 2.1 Let X and Y be normed spaces and 

VU:A ®  be an injective linear bounded 

operator. Then a family of bounded linear 

operators 0,XY:R >a®a  such that 

 , is called a 

regularization scheme for A and α the 

regularization parameter. 

We clearly have that 0asfAR
1 ®a® -

a . A 

regularization scheme approximates the solution 

 of fA =j  by d
a

d
a =j fR: . 

Writing ,ARfRfR j-j+-=j-j aa
d

a
d
a we 

estimate j-j+d£j-j aa
d
a ARR . 

Since the operators aR cannot be uniformly 

bounded with respect to α and RαA cannot be 

norm convergence as 0®a ,  the first term on 

the right hand side is large for α small whereas 

the second term on the right hand side is large if 

α is not small! So how do we choose α? A 

reasonable strategy is to choose )(da=a  such 

that j®jda as 0®d . 

Definition 2.2 A strategy for a regularization 

scheme 0,R >aa  is called regular if for every 

)X(Af Îd  and all Yf Îd  such that 

 we have that fAfR
1

)(
-d

da ®  as 

0®d . 

A natural strategy for choosing  )(da=a  is the 

discrepancy principle of Morozov, i.e the residual 

dd
a -j fA  should not be smaller than the 

accuracy of the measurements of f. 

From now on X and Y will be infinite dimensional 

and 0A,YX:A ¹®  a compact operator. The 

operator XX:AA
* ®  is compact and self-adjoint 

hence there exists at most a countable set of 

eigenvalues ¥l 1n}{ , such that .AA nnn
* jl=j  

Hence  
2

nnn
*

),AA( jl=jj  which implies that 

0n ³l . The non negative square roots of the 

eigenvalues of A*A are called the singular value 

of A. 

Theorem 2.2 Let { } 1n
¥m be the sequence of 

nonzero singular values of the compact operator 

YX:A ® ordered such that:  ....321 m³m³m  

Then there exist orthonormal sequences 

{ } { } :thatsuchingandXin 1n1n
¥¥j  

nnn
*

nnn gA,gA jm=m=j  
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For every XÎj we have the singular value 

decomposition: 

j+jå jj=j
¥

P),( n
1

n  

Where )A(NX:P ®  is the orthogonal projection 

operator of X onto N(A) and  

nn
1

n g),(A jjåm=j
¥

 

The system )g( nnnjm  is called a singular system 

of A. 

 The following theorem known as Picard’s 

Theorem provides a sufficient condition for the 

existence of a solution to fA =j and reveals the 

ill-posed nature of this equation. 

Theorem 2.3 (Picard’s Theorem) Let YX:A ® be 

a compact operator with singular 

system )g( nnnjm . The the equation fA =j  is 

solvable if and only if 
^Î )A(Nf

*
 and  

¥<å
m

¥ 2
n

1
2
n

)g,f(
1

. 

In this case a solution to fA =j is given by 

nn
1

)g,f(
n

1
jå

m
=j
¥

 

Note that Picard’s Theorem illustrates 

the ill-posed nature of the equation fA =j . In 

particular, settings ngff d+=d , we obtain a 

solution of dd =j fA given by nn /mdj+j=jd , 

¥®
m

=
-

j-j

d

d

n

1

ff
 

Since by Hilbert-Schmidt Theorem we 

have that 0n ®m . We say that fA =j is mildly 

ill-posed if the singular values decay slowly to 

zero and severely ill-posed if they decay very 

rapidly (for example exponentially). All of the 

inverse scattering problems considered in this 

book are severely ill-posed. 

There are two well-known regular 

regularization schemes, namely the spectral cut-

off method and the Tikhonov regularization. 

Spectral cut-off.  Let YX:A ®  be an 

injective compact operator with singular system 

)g( nnnjm . Then the spectral cut-off: 

å j
m

=
m³m mn

nn
n

m )g,f(
1

:fR  

Describes a regularization scheme with 

regularization parameter ¥®m  and 

mm /1R m=  (see [3] for details) 

Tikhonov Regularization. Let YX:A ® be 

a compact operator. Then for every α > 0 the 

operator XX:AAI
* ®+a  is bijective and has a 

bounded inverse. Furthermore, if A is injective 

than;  

*1*
A)AAI(:R

-
a +a=  

Describes a regularization scheme, known as 

Tikhonov regularization with 
a

£a
2

1R  . The 

Tikhonov regularization scheme has an 

equivalent formulation which is formulated in the 

following theorem (see [3] for the proof). 

Theorem 2.4 Let YX:A ® be a compact operator 

and let α >0. Then for every YfÎ there exist a 

unique XÎja such that: 

{ }22

X

22
fAinffA ja+-j=ja+-j

Îj
aa  

The minimize is the unique solution of 

.fAAA
** =j+aj aa  

We finish this section by considering a class of 

compact integral operators that will appear in the 

following study of inverse problems. Let 

m
RGÌ be a measurable set. 

Definition 2.3 The linear operator 

)G(L)G(L:A
22 ®  defined by 

ò j=j G dy)y()y,x(K:)x)(A(  

where CGxG:K ®  is a given function known is 

call an integral operator with kernel K. If K:G x G 

→ C is a continuous function the operator A  is 

called integral operator with continuous kernel. 

The following theorem will be of great 

importance to us in the following and the proof 

can be found in [7] and [9]. 

Theorem 2.5 The integral operator with 

continuous kernel is compact in L
2
(G). 



Hamzallari & Cakoni 

 

AKTET Vol. V, Nr 3, 2012 312  

3. Inverse Scattering and Ill-posed Equation 

Let us consider the scattering of acoustic plane 

waves d.xkii
e:u = in the direction d by a sound 

hard obstacle D (called Scatterer) which for sake 

of simplicity we assume is a connected bounded 

region of R
2
 at a given fixe frekuency ω where 

ck w= , c being the sound speed (note that here 

it assumed that field is time harmonic i.e 

ti
e

w- the time dependent term). The scattered 

field s
u satisfies 

)5(0)iku
r

u
(rlim

)4(Don0eu

)3(D\Rin0uku

s
s

r

dxkis

2s2s

=-
¶

¶

¶=+

=+D

¥®

×
 

where the Sommerfeld radiation (5) is assumed 

to hold uniformly in θ with (r, θ) are polar 

coordinates. This exterior boundary value 

problem is well-posed, i.e. a unique solution 

exists in appropriate spaces [5]. It is known tha 

the (radiating) fundamental solution to the 

Helmholtz equation is given by; 

 

 

 

where H )1(
0 is the Hankel fuction of the first kind, 

and note that Φ(x,y) satisfies the Sommerfeld 

radiation condition with respect to both x and y. 

The scattered field 
s

u satisfies the asymptotic the 

asymptotic behavior [6], [3] 

   

 )7()r(O),(u
r

e
)x(u

23
rki

s -
¥ +fq=  

Where )sin,(cosd ff= , k is fixed and  

)8()y(ds)e
v

u

e
v

u(
k8

e
),(u

)(Cosrki

y

s

)(Cosrki

y

s
D

4i

)y

)y

q-q-

q-q-
¶

p

¥

¶

¶

-
¶

¶
ò

p
=fq

 

The function ¥u is called the far field pattern 

corresponding to the scattering problem (3) – (5). 

Please note that the far field pattern of the 

fundamental solution  

                                   

)(Cosrki
4i

yye
k8

e
)y,(

q-q-
p

¥
p

=qF , where  

),r(y yy q=  

The inverse obstacle  scattering problem now is: 

given the (measured) far field pattern ),(u fq¥ , 

for ]2,0[, pÎfq  find D. As we will see bellow this 

problem is severely ill-posed and non-linear since 

the far field pattern does not depend linearly on 

D. We note that this inverse problem arises from 

many applications in medical imaging, non-

destructive testing, etc. We also note that the 

exact far field pattern  , for ]2,0[, pÎfq uniquely 

determine D [6], [11]. We will present two 

methods for doing this inverse problems, namely 

the decomposition method [14] and the linear 

sampling method [8]. Both methods lead to 

solving an ill-posed integral equation of the first 

kind for which we are going to use regularization 

techniques as developed in Section 2. 

3.1 The decomposition method 

The main idea of the decomposition method is to 

break the inverse obstacle scattering problem 

into two parts: the first part deals with the ill-

posedess by constructing the scattered wave 
s

u  

from the far field pattern ¥u  and the second 

part deals with the non-linearity by determining 

the unknown boundary D¶ of the scatterer as the 

location where the boundary condition for the 

total field 
sdikx

ueu += ×
 is satisfied in a least 

square sense. We assume that the unknown 

scatter  D is bounded and simply sonnected and 

enough a priori information on the unknown 

scatterer is assumed so that one can place a 

closed surface G  inside D. Then the scattered 

field 
s

u is sought as a single layer potential [9], 

[13] 

 

)9(D\Rx)y(ds)y,x()y()x(u
2

D

s Îò Fy=
¶

 

where fundamental solution ),( ××F is given by (6) 

and )(L
2 GÎy (the space of square integrable 

functions in G ) is a function to be determined. In 

)6()yxk(H
4

i
:)y,x(

)1(
0 -=F
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this case the far field pattern ¥u has the 

representation 

)10()y(ds)y(e)(u
D

)(Cosrki yy yò=q
¶

q-q-
¥

 

And y is now determined by solving the integral 

equation (10). The kernel of the integral operator 

on the right-hand side of (10) is analytic, whence 

this is a compact operator according to Theorem 

2.5. The later means that (10) is an ill-posed 

equation, thus in order  to solve it one needs to 

use the Tikhonov (it is known that this operator is 

injective under some assumption on D¶ ). Having 

found the regularized solution ay with 

regularization parameter a and given an 

approximation of the scattered wave 

s
ua obtained by inserting the Tikhonov 

regularization solution ay of (10) into (9), the 

unknown boundary D¶ is then determined by 

requiring that the sound-soft boundary condition 

0uu
si =+ on D¶ be satisfied in a least squares 

since, i.e by minimizing 

2

)D(L

si
2

uu
¶

a+  

over a suitable set of admissible curves. 

3.2 Far field equation and the linear sampling 

method 

We now define the far field operator 

]2,0[2L]2,0[2L:F p®p  by 

)11(d)(g),(u:))(Fg(
2
0 ffò fq=q p

¥  

From the representation (8) for ¥u and the fact 

that 
s

u  depends continuously on 
i

u in )D(1C ¶ we 

see that ),(u fq¥ is continuous on [ ]2,0 p x 

[ ]2,0 p . This fact combined with Theorem 2.5 

proves the following result. 

Theorem 3.1  The far field operator 

]2,0[2L]2,0[2L:F p®p  is compact  

The far field operator is an important object in 

the study of inverse obstacle scattering problem 

considered here.  In particular it contains 

information about he obstacle D and is related to 

the scattering operator S by Fe
k2

ik
IS 4

ip
-

p
+= . 

By superposition Fg is the far field pattern of the 

scattered field due to the Herglotz fuction 

fò q= p f-q
d)(ge:v

2
0

)cos(ikr
g  

As incident wave 

Theorem 3.2 The far field operator corresponding 

to the scattering problem (3) –(5) is injective with 

dense range, provided that 2
k is not a Direchlet 

eigenvalue of D-  in D(i.e. 0vkv
2 =+D in D, v=0 

on D¶ has only the trivial solution v=0). 

The linear sampling method looks for solution to 

the far field equation [1], [2], [4], [8], [10]. 

)12(Rzfor),z,())(fg(
2ÎqF=q ¥

 

To shoh why the solution of (12) can be used to 

reconstruct D, we assume that gz solves (12) and 

DzÎ . Then it follows from rellich’s lemma [3], [6] 

that 

)z,x(d)(g),x(u
2

0
z

s F=fò ff
p

D\Rzfor
2Î  

From the boundary condition u=0 on D¶ we see 

that 

)13(0)z,x()x(vgz =F+  

For Dx ¶Î where gzv is Herglotz wave fuction 

with kernel  zg . We can now conclude from (13) 

that gzv  becomes unbounded as Dxz ¶Î® and 

hence  

¥=p
¶®

]2,0[Lglim
2

z
Dz

 

i.e D¶ is characterized by points z where the 

solution of (12) becomes unbounded. The far 

field equation is severily ill-posed due to the 

compactness of the far field operator F. Thus one 

solve the regularized equation 
2

Rz),z,(*Fg)F*FI( Î×F=+a  

In fact, only the noisy far field pattern ),(u fqd
¥ is 

known in practice which means that the noisy far 

field operator dF is available which is given by 

fffqò=q p d
¥d d)(g),(u:))(gF(

2
0  
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Where d is the noise level. Thus, one solves the 

following regularized equation 

2**
Rz),z,(Fg)FFI)(( Î×F=+da ddd  

where the Tikhonov regularization parameter 

)(da  is chosen by the Morozov discrepancy 

principle as explained in Section 2. 
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